Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • Technology

Why Are Scientists So Excited About A Recently Claimed Quantum Computing Milestone?

  • September 28, 2019
  • admin

A quantum computer may have solved a problem in minutes that would take the fastest conventional supercomputer more than 10,000 years. A draft of a paper by Google researchers laying out the achievement leaked in recent days, setting off an avalanche of news coverage and speculation.

Researchers from Google may have demonstrated ‘quantum supremacy’ for the first time, opening pathways to a new era of computation. Google

While the research has not yet been peer-reviewed – the final version of the paper is expected to appear soon – if it all checks out it would represent “the first computation that can only be performed on a quantum processor”.

That sounds impressive, but what does it mean?

Quantum computing: the basics

To understand why quantum computers are a big deal, we need to go back to conventional, or digital, computers.

A computer is a device that takes an input, carries out a sequence of instructions, and produces an output. In a digital computer, these inputs, instructions and outputs are all sequences of 1s and 0s (individually called bits).

A quantum computer does the same thing, but it uses quantum bits, or qubits. Where a bit takes on only one of two values (1 or 0), a qubit uses the complex mathematics of quantum mechanics, providing a richer set of possibilities.

Building quantum computers takes phenomenal engineering. They must be isolated to ensure nothing interferes with the delicate quantum states of the qubits. This is why they are kept in vacuum chambers containing fewer particles than outer space, or in refrigerators colder than anything in the universe.

But at the same time, you need a way to interact with the qubits to carry out instructions on them. The difficulty of this balancing act means that the size of quantum computers has grown slowly.

Read More  New Qubits Could Make Quantum Computers More Compact

However, as the number of qubits connected together in a quantum computer grows, it becomes exponentially more complicated to imitate its behaviour with a digital computer. Adding a single qubit to your quantum computer could double the amount of time it would take a digital computer to carry out equivalent calculations.

By the time you get up to 53 qubits – that’s how many are in the Sycamore chip used by the Google researchers – the quantum computer can quickly perform calculations that would take our biggest digital computers (supercomputing clusters) thousands of years.

What is quantum supremacy?

Quantum computers won’t be faster than digital computers for everything. We know they will be good at factorising large numbers (which is bad news for online security) and simulating some physical systems like complex molecules (which is good news for medical research). But in many cases they will have no advantage, and researchers are still working out exactly what kinds of calculations they can speed up and by how much.

Quantum supremacy was the name given to the hypothetical point at which a quantum computer could perform a calculation no conceivable digital computer could perform in a reasonable amount of time.

The Google researchers now appear to have performed such a calculation, although the calculation itself is at first sight uninspiring.

The task is to execute a sequence of random instructions on the quantum computer, then output the result of looking at its qubits. For a big enough number of instructions, this becomes very hard to mimic with a digital computer.

Useful quantum computers still not in sight

The idea of quantum supremacy is popular because it is a graspable milestone – a valuable currency in the highly competitive area of quantum computing research.

Read More  AI-driven Sentiment Analysis: Hacking Emotions To Boost Customer Service

Google’s achievement is technically impressive because it required full programmability on the 53-qubit chip. But the task performed was designed specifically to demonstrate quantum supremacy, and nothing more. It is not known whether such a device can perform any other calculations that a digital computer cannot also do. In other words, this does not signal the arrival of quantum computing.

A usable general-purpose quantum computer will need to be much larger. Instead of 53 qubits, it will require millions. (Strictly speaking, it will require thousands of nearly error-free qubits, but producing those will involve millions of noisy qubits like those in the Google device.)

Ubiquitous quantum computing is still far enough away that attempting to predict when it will occur and what useful tasks it will eventually be used for is a recipe for embarrassment because history teaches us that unforeseen applications will blossom as access to new tools becomes available.

A new tool for science

From a scientific point of view, the future of quantum computation is now much more exciting.

On one hand, quantum computation is confronting. In the same way the outputs of early digital computers could be verified by hand calculations, the outputs of quantum computers have until now been verifiable by digital computers.

This is no longer the case. But that is good, because now these new devices give us new scientific tools. Just running these devices produces exotic physics that we have never encountered in nature. Simulating quantum physics in this new regime could provide new insights into all areas of science, all the way from more detailed understandings of biological processes to probing the possible effects quantum physics has on spacetime.

Read More  High-Five Or Thumbs-Up? New Device Detects Which Hand Gesture You Want To Make

Quantum computation represents a fundamental shift that is now under way. What is most exciting is not what we can do with with a quantum computer today, but the undiscovered truths it will reveal tomorrow.The Conversation

 

Christopher Ferrie, Senior Lecturer, UTS Chancellor’s Postdoctoral Research and ARC DECRA Fellow, University of Technology Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

admin

Related Topics
  • Computer Science
  • Google
  • quantum computer
  • Quantum Computing
You May Also Like
View Post
  • People
  • Technology

DBS Singapore: The Best Boasting To Be The Best For So Long, Humbled By Hubris

  • March 31, 2023
View Post
  • Artificial Intelligence
  • Software
  • Technology

Bard And ChatGPT — A Head To Head Comparison

  • March 31, 2023
View Post
  • Artificial Intelligence
  • Technology

Unlocking The Secrets Of ChatGPT: Tips And Tricks For Optimizing Your AI Prompts

  • March 29, 2023
View Post
  • Artificial Intelligence
  • Technology

Try Bard And Share Your Feedback

  • March 29, 2023
View Post
  • Artificial Intelligence
  • Data
  • Data Science
  • Machine Learning
  • Technology

Google Data Cloud & AI Summit : In Less Than 12 Hours From Now

  • March 29, 2023
View Post
  • Artificial Intelligence
  • Technology

Talking Cars: The Role Of Conversational AI In Shaping The Future Of Automobiles

  • March 28, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Technology

ChatGPT 4.0 Finally Gets A Joke

  • March 27, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Technology

Mr. Cooper Is Improving The Home-buyer Experience With AI And ML

  • March 24, 2023

Leave a Reply

Your email address will not be published. Required fields are marked *

Stay Connected!
LATEST
  • 1
    DBS Singapore: The Best Boasting To Be The Best For So Long, Humbled By Hubris
    • March 31, 2023
  • 2
    Bard And ChatGPT — A Head To Head Comparison
    • March 31, 2023
  • 3
    Modernize Your Apps And Accelerate Business Growth With AI
    • March 31, 2023
  • 4
    Why Your Open Source Project Needs A Content Strategy
    • March 31, 2023
  • 5
    From Raw Data To Actionable Insights: The Power Of Data Aggregation
    • March 30, 2023
  • 6
    Effective Strategies To Closing The Data-Value Gap
    • March 30, 2023
  • 7
    Unlocking The Secrets Of ChatGPT: Tips And Tricks For Optimizing Your AI Prompts
    • March 29, 2023
  • 8
    Try Bard And Share Your Feedback
    • March 29, 2023
  • 9
    Google Data Cloud & AI Summit : In Less Than 12 Hours From Now
    • March 29, 2023
  • 10
    Talking Cars: The Role Of Conversational AI In Shaping The Future Of Automobiles
    • March 28, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    Introducing GPT-4 in Azure OpenAI Service
    • March 21, 2023
  • 2
    Document AI Introduces Powerful New Custom Document Classifier To Automate Document Processing
    • March 28, 2023
  • 3
    How AI Can Improve Digital Security
    • March 27, 2023
  • 4
    ChatGPT 4.0 Finally Gets A Joke
    • March 27, 2023
  • 5
    Mr. Cooper Is Improving The Home-buyer Experience With AI And ML
    • March 24, 2023
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
  • About

Input your search keywords and press Enter.