Liwaiwai Liwaiwai



Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • Machine Learning

Machine Learning Predicts How Big Wildfires Will Get

  • November 27, 2019
  • admin

A new technique can predict the final size of wildfires from the moment of ignition, researchers report.

Built around a machine learning algorithm, the model can help forecast whether a wildfire will be small, medium, or large by the time it has run its course—knowledge useful to those in charge of allocating scarce firefighting resources.

“A useful analogy is to consider what makes something go viral in social media,” says lead author Shane Coffield, a doctoral student in earth system science at the University of California, Irvine. “We can think about what properties of a specific tweet or post might make it blow up and become really popular—and how you might predict that at the moment it’s posted or right before it’s posted.”

Many Wildfires At Once

The researchers applied that thinking to a hypothetical situation in which dozens of fires break out simultaneously. It sounds extreme, but this scenario has become all too common in recent years in parts of the western United States as climate change has resulted in hot and dry conditions on the ground that can put a region at high risk of ignition.

“Only a few of those fires are going to get really big and account for most of the burned area, so we have this new approach that’s focused on identifying specific ignitions that pose the greatest risk of getting out of control,” Coffield says.

The team used Alaska as a study area for the project because a rash of concurrent fires in its boreal forests has plagued the state over the past decade, threatening human health and vulnerable ecosystems.

At the core of the new model is a “decision tree” algorithm. By feeding it climate data and crucial details about atmospheric conditions and the types of vegetation present around the starting point of a fire, the researchers could predict the final size of a blaze 50% of the time. A key variable is the vapor pressure deficit—just how little moisture there is in the area—during the first six days of a fire’s existence. A second major consideration for Alaskan forests is the percentage of trees of the black spruce variety.

“Black spruce, which are dominant in Alaska, have these long, droopy branches that are designed—from an evolutionary perspective—to wick up fire,” says coauthor James Randerson, professor and chair in earth system science. “Their seeds are adapted to do well in a post-fire environment, so their strategy is to kill off everything else around them during a fire to reduce competition for their offspring.”

Randerson says Coffield was able to show that the fraction of black spruce within a 2.5-mile radius of the ignition site is an important factor in judging how big a fire will grow.

Speedy Predictions

One advantage of this new method is speed, Coffield says. The algorithm “learns” with each new data point and can quickly figure out the critical thresholds for identifying large fires. It’s possible for people to do this manually or by running simulations on each different ignition, he says, but the machine learning system’s statistical approach is “really much faster and more efficient, especially for considering multiple fires simultaneously.”

Faced with a climate change-induced jump in the number of wildfires expected each season, state, county, and local firefighting authorities could benefit from some updated tools and techniques, Randerson notes. In addition to potentially saving lives and protecting property and crucial infrastructure, fire suppression efforts will also become increasingly important in preserving the natural world.

“In places like Alaska, there’s a need to limit the area affected by fire, because if we keep having these unusual, high-fire years, more carbon will be lost from the landscape, exacerbating warming,” Randerson says. “If we let the fires run away, we could be in a situation where there’s a lot of significant damage to both the climate system and ecosystems.”

The study appears in the International Journal of Wildland Fire. The UC Irvine’s Machine Learning and Physical Sciences program and the National Science Foundation supported the research.

 

Source: UC Irvine

Original Study DOI: 10.1071/WF19023

This article originally appeared in Futurity.

admin

Related Topics
  • Algorithm
  • Firefighting
  • Forests
  • Prediction
  • Wildfire
You May Also Like
View Post
  • Data
  • Machine Learning

8 Best Human Behaviour Datasets For Machine Learning

  • January 30, 2023
View Post
  • Artificial Intelligence
  • Data
  • Machine Learning

Built With BigQuery: How To Accelerate Data-Centric AI Development With Google Cloud And Snorkel AI

  • January 29, 2023
View Post
  • Artificial Intelligence
  • Machine Learning

AI Might Be Seemingly Everywhere, But There Are Still Plenty Of Things It Can’t Do—for now

  • January 27, 2023
View Post
  • Machine Learning
  • Technology

GPT-3’s Next Mark: Diagnosing Alzheimer’s Through Speech

  • January 16, 2023
View Post
  • Artificial Intelligence
  • Engineering
  • Machine Learning
  • Practices

Debunking 4 Common Myths About Machine Learning

  • January 12, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Platforms
  • Technology

IT Prediction: AI Could Help Realize The Dream Of The Four-Day Work Week

  • January 9, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Technology

Book: AI Is Cool, But Nowhere Near Human Capacity

  • January 8, 2023
View Post
  • Machine Learning
  • Research

Machine Learning Algorithm Predicts How To Get The Most Out Of Electric Vehicle Batteries

  • January 7, 2023

Leave a Reply

Your email address will not be published. Required fields are marked *

Stay Connected!
LATEST
  • 1
    Microsoft‘s Big AI Ambitions Go Beyond Just OpenAI And ChatGPT
    • February 3, 2023
  • 2
    Deepfakes: Faces Created By AI Now Look More Real Than Genuine photos
    • February 3, 2023
  • 3
    GPT-3 In Your Pocket? Why Not!
    • February 3, 2023
  • 4
    Can AI Replace Cloud Architects?
    • February 2, 2023
  • 5
    Meet Aiko And Aiden: The World’s First AI Interns
    • February 2, 2023
  • 6
    Google Scrambles To Catch Up In The Wake Of OpenAI’s ChatGPT
    • January 31, 2023
  • 7
    9 Ways We Use AI In Our Products
    • January 31, 2023
  • 8
    Google Cloud Unveils New AI Tools for Retailers
    • January 31, 2023
  • 9
    7 Ways Google Is Using AI To Help Solve Society’s Challenges
    • January 30, 2023
  • 10
    The Ethics Of Machine Learning: Understanding The Role Of Developers And Designers
    • January 30, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    8 Best Human Behaviour Datasets For Machine Learning
    • January 30, 2023
  • 2
    Built With BigQuery: How To Accelerate Data-Centric AI Development With Google Cloud And Snorkel AI
    • January 29, 2023
  • 3
    What Kind Of Future Will AI Bring Enterprise IT?
    • January 29, 2023
  • 4
    Prompt Engineering For ChatGPT And Generative AI
    • January 29, 2023
  • 5
    AI Might Be Seemingly Everywhere, But There Are Still Plenty Of Things It Can’t Do—for now
    • January 27, 2023
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
  • About

Input your search keywords and press Enter.