Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • Artificial Intelligence

Neural Networks That Imagine Others’ States Of Mind

  • November 14, 2020
  • relay

Image

Scientists often train computers to learn in the same way that young children do – by setting them loose and letting them play with themselves. Kids interact with their environments, play games on their own, and gradually get better at doing things.

Many artificial intelligence (AI) systems tout their ability to “learn from scratch,” but this usually isn’t strictly true. Self-driving cars have intricate 3D maps of their surroundings, while systems like AlphaGo have information about the tile positions of the various game pieces. But what if an AI could be trained by imagining others’ states of mind?

In a new paper, a team led by MIT computer scientists trained a neural network to learn NASCAR-style driving maneuvers purely from looking at a sequence of images taken from a two-person racing game. The network begins without knowing anything about cars, roads, or driving – and yet ultimately becomes able to do complex moves like overtaking an opponent on a turn and even forcing other cars off the road.

The project builds off an earlier paper that integrates tools from social psychology to classify driving behavior with respect to how selfish or selfless a particular driver is. While in this case the system learned more competition-oriented actions, the researchers say that it could also be used to learn more cooperative actions, such as negotiating with other drivers at intersections and merging in dense highway traffic.

The “Deep Latent Competition” (DLC) algorithm learns from interactions in simulated driving sequences purely based on visual observations. It uses its own learned response to different scenarios in order to predict the actions of the car it’s racing against.

Read More  Dexterous Robotic Hands Manipulate Thousands Of Objects With Ease

“This method of ‘imagined self-play’ learns a model of the world and imagines the outcome of actions taken during races against opponents,” says graduate student Wilko Schwarting, co-lead author on a new paper on the project alongside graduate student Tim Seyde and research scientist Igor Gilitschenski. “By imagining interactions with other drivers, fewer interactions are necessary to become competitive.”

In simulations the team’s car won 2.3 times as many races as the other car, which was trained on a traditional “single-agent world model” which only incorporates how its own actions affect the world.

“The environment allows us to differentiate between skillful and competitive driving,” says MIT professor Daniela Rus, one of the senior authors on the paper. “While the former is the basis for high-performance racing, learning to beat a skillful opponent is a far greater challenge.”

Rus, Schwarting, Seyde and Gilitschenski co-wrote the paper alongside MIT professor Sertac Karaman, PhD student Lucas Liebenwein and graduate student Ryan Sander. The paper is being presented virtually this week at the annual Conference on Robot Learning (CoRL).

This project was supported in part by Qualcomm and the Toyota Research Institute.

 

This article is republished from MIT Computer Science & Artificial Intelligence Lab by Adam Conner-Simons, MIT CSAIL

relay

Related Topics
  • MIT
  • MIT CSAIL
  • Neural Networks
You May Also Like
View Post
  • Artificial Intelligence
  • Software
  • Technology

Bard And ChatGPT — A Head To Head Comparison

  • March 31, 2023
View Post
  • Artificial Intelligence
  • Platforms

Modernize Your Apps And Accelerate Business Growth With AI

  • March 31, 2023
View Post
  • Artificial Intelligence
  • Technology

Unlocking The Secrets Of ChatGPT: Tips And Tricks For Optimizing Your AI Prompts

  • March 29, 2023
View Post
  • Artificial Intelligence
  • Technology

Try Bard And Share Your Feedback

  • March 29, 2023
View Post
  • Artificial Intelligence
  • Data
  • Data Science
  • Machine Learning
  • Technology

Google Data Cloud & AI Summit : In Less Than 12 Hours From Now

  • March 29, 2023
View Post
  • Artificial Intelligence
  • Technology

Talking Cars: The Role Of Conversational AI In Shaping The Future Of Automobiles

  • March 28, 2023
View Post
  • Artificial Intelligence
  • Tools

Document AI Introduces Powerful New Custom Document Classifier To Automate Document Processing

  • March 28, 2023
View Post
  • Artificial Intelligence
  • Design
  • Practices

How AI Can Improve Digital Security

  • March 27, 2023

Leave a Reply

Your email address will not be published. Required fields are marked *

Stay Connected!
LATEST
  • 1
    DBS Singapore: The Best Boasting To Be The Best For So Long, Humbled By Hubris
    • March 31, 2023
  • 2
    Bard And ChatGPT — A Head To Head Comparison
    • March 31, 2023
  • 3
    Modernize Your Apps And Accelerate Business Growth With AI
    • March 31, 2023
  • 4
    Why Your Open Source Project Needs A Content Strategy
    • March 31, 2023
  • 5
    From Raw Data To Actionable Insights: The Power Of Data Aggregation
    • March 30, 2023
  • 6
    Effective Strategies To Closing The Data-Value Gap
    • March 30, 2023
  • 7
    Unlocking The Secrets Of ChatGPT: Tips And Tricks For Optimizing Your AI Prompts
    • March 29, 2023
  • 8
    Try Bard And Share Your Feedback
    • March 29, 2023
  • 9
    Google Data Cloud & AI Summit : In Less Than 12 Hours From Now
    • March 29, 2023
  • 10
    Talking Cars: The Role Of Conversational AI In Shaping The Future Of Automobiles
    • March 28, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    Introducing GPT-4 in Azure OpenAI Service
    • March 21, 2023
  • 2
    Document AI Introduces Powerful New Custom Document Classifier To Automate Document Processing
    • March 28, 2023
  • 3
    How AI Can Improve Digital Security
    • March 27, 2023
  • 4
    ChatGPT 4.0 Finally Gets A Joke
    • March 27, 2023
  • 5
    Mr. Cooper Is Improving The Home-buyer Experience With AI And ML
    • March 24, 2023
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
  • About

Input your search keywords and press Enter.