Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • Artificial Intelligence
  • People

Artificial Intelligence Can Deepen Social Inequality. Here Are 5 Ways To Help Prevent This

  • January 15, 2021
  • admin

From Google searches and dating sites to detecting credit card fraud, artificial intelligence (AI) keeps finding new ways to creep into our lives. But can we trust the algorithms that drive it?

As humans, we make errors. We can have attention lapses and misinterpret information. Yet when we reassess, we can pick out our errors and correct them.


Partner with liwaiwai.com
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

But when an AI system makes an error, it will be repeated again and again no matter how many times it looks at the same data under the same circumstances.

AI systems are trained using data that inevitably reflect the past. If a training data set contains inherent biases from past human decisions, these biases are codified and amplified by the system.

Or if it contains less data about a particular minority group, predictions for that group will tend to be worse. This is called “algorithmic bias”.

Gradient Institute has co-authored a paper demonstrating how businesses can identify algorithmic bias in AI systems, and how they can mitigate it.

The work was produced in collaboration with the Australian Human Rights Commission, Consumer Policy Research Centre, CSIRO’s Data61 and the CHOICE advocacy group.

 

How does algorithmic bias arise?

Algorithmic bias may arise through a lack of suitable training data, or as a result of inappropriate system design or configuration.

For example, a system that helps a bank decide whether or not to grant loans would typically be trained using a large data set of the bank’s previous loan decisions (and other relevant data to which the bank has access).

The system can compare a new loan applicant’s financial history, employment history and demographic information with corresponding information from previous applicants. From this, it tries to predict whether the new applicant will be able to repay the loan.

Read More  Huawei And Partners Announce Yucatan Wildlife Conservation Findings

But this approach can be problematic. One way in which algorithmic bias could arise in this situation is through unconscious biases from loan managers who made past decisions about mortgage applications.

If customers from minority groups were denied loans unfairly in the past, the AI will consider these groups’ general repayment ability to be lower than it is.

Young people, people of colour, single women, people with disabilities and blue-collar workers are just some examples of groups that may be disadvantaged.

 

Bias harms both individuals and companies

The biased AI system described above poses two key risks for the bank.

First, the bank could miss out on potential clients, by sending victims of bias to its competitors. It could also be held liable under anti-discrimination laws.

If an AI system continually applies inherent bias in its decisions, it becomes easier for government or consumer groups to identify this systematic pattern. This can lead to hefty fines and penalties.

 

Mitigating algorithmic bias

Our paper explores several ways in which algorithmic bias can arise.

It also provides technical guidance on how this bias can be removed, so AI systems produce ethical outcomes which don’t discriminate based on characteristics such as race, age, sex or disability.

For our paper, we ran a simulation of a hypothetical electricity retailer using an AI-powered tool to decide how to offer products to customers and on what terms. The simulation was trained on fictional historical data made up of fictional individuals.

Based on our results, we identify five approaches to correcting algorithmic bias. This toolkit can be applied to businesses across a range of sectors to help ensure AI systems are fair and accurate.

Read More  Introducing Cloud AI Platform Pipelines

1. Get better data

The risk of algorithmic bias can be reduced by obtaining additional data points or new types of information on individuals, especially those who are underrepresented (minorities) or those who may appear inaccurately in existing data.

2. Pre-process the data

This consists of editing a dataset to mask or remove information about attributes associated with protections under anti-discrimination law, such as race or gender.

3. Increase model complexity

A simpler AI model can be easier to test, monitor and interrogate. But it can also be less accurate and lead to generalisations which favour the majority over minorities.

4. Modify the system

The logic and parameters of an AI system can be proactively adjusted to directly counteract algorithmic bias. For example, this can be done by setting a different decision threshold for a disadvantaged group.

5. Change the prediction target

The specific measure chosen to guide an AI system directly influences how it makes decisions across different groups. Finding a fairer measure to use as the prediction target will help reduce algorithmic bias.

Illustration portraying the input and output of information via a brain.
The effectiveness of an AI system is highly dependent on the quality of data used to train it. Shutterstock

 

Consider legality and morality

In our recommendations to government and businesses wanting to employ AI decision-making, we foremost stress the importance of considering general principles of fairness and human rights when using such technology. And this must be done before a system is in-use.

We also recommend systems are rigorously designed and tested to ensure outputs aren’t tainted by algorithmic bias. Once operational, they should be closely monitored.

Finally, we advise that to use AI systems responsibly and ethically extends beyond compliance with the narrow letter of the law. It also requires the system to be aligned with broadly-accepted social norms — and considerate of impact on individuals, communities and the environment.

Read More  How AI Uncovers Important Contract Data

With AI decision-making tools becoming commonplace, we now have an opportunity to not only increase productivity, but create a more equitable and just society – that is, if we use them carefully.

 

Tiberio Caetano, Chief Scientist, Gradient Institute, University of Sydney and Bill Simpson-Young, Chief Executive, Gradient Institute, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.


For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

admin

Related Topics
  • AI
  • AI Bias
  • Algorithm bias
  • Algorithmic Bias
  • Artificial Intelligence
  • Artificial intelligence and jobs
  • Ethics in artificial intelligence
  • Social Inequality
You May Also Like
OpenAI
View Post
  • Artificial Intelligence
  • Platforms

How We Interact With Information: The New Era Of Search

  • September 28, 2023
View Post
  • Artificial Intelligence
  • Engineering
  • Machine Learning
  • Platforms

Bring AI To Looker With The Machine Learning Accelerator

  • September 28, 2023
View Post
  • Artificial Intelligence
  • Technology

Microsoft And Mercy Collaborate To Empower Clinicians To Transform Patient Care With Generative AI

  • September 27, 2023
View Post
  • Artificial Intelligence
  • Technology

NASA’s Mars Rovers Could Inspire A More Ethical Future For AI

  • September 26, 2023
View Post
  • Artificial Intelligence
  • Platforms

Oracle CloudWorld 2023: 6 Key Takeaways From The Big Annual Event

  • September 25, 2023
View Post
  • Artificial Intelligence

3 Ways AI Can Help Communities Adapt To Climate Change In Africa

  • September 25, 2023
Robotic Hand | Lights
View Post
  • Artificial Intelligence
  • Technology

Nvidia H100 Tensor Core GPUs Come To Oracle Cloud

  • September 24, 2023
View Post
  • Artificial Intelligence
  • Engineering
  • Technology

AI-Driven Tool Makes It Easy To Personalize 3D-Printable Models

  • September 22, 2023
A Field Guide To A.I.
Navigate the complexities of Artificial Intelligence and unlock new perspectives in this must-have guide.
Now available in print and ebook.

charity-water



Stay Connected!
LATEST
  • OpenAI 1
    How We Interact With Information: The New Era Of Search
    • September 28, 2023
  • 2
    Bring AI To Looker With The Machine Learning Accelerator
    • September 28, 2023
  • 3
    3 Questions: A New PhD Program From The Center For Computational Science And Engineering
    • September 28, 2023
  • 4
    Microsoft And Mercy Collaborate To Empower Clinicians To Transform Patient Care With Generative AI
    • September 27, 2023
  • 5
    NASA’s Mars Rovers Could Inspire A More Ethical Future For AI
    • September 26, 2023
  • 6
    Oracle CloudWorld 2023: 6 Key Takeaways From The Big Annual Event
    • September 25, 2023
  • 7
    3 Ways AI Can Help Communities Adapt To Climate Change In Africa
    • September 25, 2023
  • Robotic Hand | Lights 8
    Nvidia H100 Tensor Core GPUs Come To Oracle Cloud
    • September 24, 2023
  • 9
    AI-Driven Tool Makes It Easy To Personalize 3D-Printable Models
    • September 22, 2023
  • 10
    Huawei: Advancing a Flourishing AI Ecosystem Together
    • September 22, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • Coffee | Laptop | Notebook | Work 1
    First HP Work Relationship Index Shows Majority of People Worldwide Have an Unhealthy Relationship with Work
    • September 20, 2023
  • 2
    Huawei Connect 2023: Accelerating Intelligence For Shared Success
    • September 20, 2023
  • 3
    Applying Generative AI To Product Design With BigQuery DataFrames
    • September 21, 2023
  • 4
    Combining AI With A Trusted Data Approach On IBM Power To Fuel Business Outcomes
    • September 21, 2023
  • Microsoft and Adobe 5
    Microsoft And Adobe Partner To Deliver Cost Savings And Business Benefits
    • September 21, 2023
  • /
  • Artificial Intelligence
  • Explore
  • About
  • Contact Us

Input your search keywords and press Enter.