Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • Robotics

Researchers Introduce A New Generation Of Tiny, Agile Drones

  • March 2, 2021
  • liwaiwai.com
drone with insect-like wings
Insects’ remarkable acrobatic traits help them navigate the aerial world, with all of its wind gusts, obstacles, and general uncertainty. Image: courtesy of Kevin Yufeng Chen

If you’ve ever swatted a mosquito away from your face, only to have it return again (and again and again), you know that insects can be remarkably acrobatic and resilient in flight. Those traits help them navigate the aerial world, with all of its wind gusts, obstacles, and general uncertainty. Such traits are also hard to build into flying robots, but MIT Assistant Professor Kevin Yufeng Chen has built a system that approaches insects’ agility.

Chen, a member of the Department of Electrical Engineering and Computer Science and the Research Laboratory of Electronics, has developed insect-sized drones with unprecedented dexterity and resilience. The aerial robots are powered by a new class of soft actuator, which allows them to withstand the physical travails of real-world flight. Chen hopes the robots could one day aid humans by pollinating crops or performing machinery inspections in cramped spaces.


Partner with liwaiwai.com
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

Chen’s work appears this month in the journal IEEE Transactions on Robotics. His co-authors include MIT PhD student Zhijian Ren, Harvard University PhD student Siyi Xu, and City University of Hong Kong roboticist Pakpong Chirarattananon.

Video thumbnail

Typically, drones require wide open spaces because they’re neither nimble enough to navigate confined spaces nor robust enough to withstand collisions in a crowd. “If we look at most drones today, they’re usually quite big,” says Chen. “Most of their applications involve flying outdoors. The question is: Can you create insect-scale robots that can move around in very complex, cluttered spaces?”

According to Chen, “The challenge of building small aerial robots is immense.” Pint-sized drones require a fundamentally different construction from larger ones. Large drones are usually powered by motors, but motors lose efficiency as you shrink them. So, Chen says, for insect-like robots “you need to look for alternatives.”

Read More  Stanford Engineers Create Perching Bird-Like Robot

The principal alternative until now has been employing a small, rigid actuator built from piezoelectric ceramic materials. While piezoelectric ceramics allowed the first generation of tiny robots to take flight, they’re quite fragile. And that’s a problem when you’re building a robot to mimic an insect — foraging bumblebees endure a collision about once every second.

Chen designed a more resilient tiny drone using soft actuators instead of hard, fragile ones. The soft actuators are made of thin rubber cylinders coated in carbon nanotubes. When voltage is applied to the carbon nanotubes, they produce an electrostatic force that squeezes and elongates the rubber cylinder. Repeated elongation and contraction causes the drone’s wings to beat — fast.

Chen’s actuators can flap nearly 500 times per second, giving the drone insect-like resilience. “You can hit it when it’s flying, and it can recover,” says Chen. “It can also do aggressive maneuvers like somersaults in the air.” And it weighs in at just 0.6 grams, approximately the mass of a large bumble bee. The drone looks a bit like a tiny cassette tape with wings, though Chen is working on a new prototype shaped like a dragonfly.

“Achieving flight with a centimeter-scale robot is always an impressive feat,” says Farrell Helbling, an assistant professor of electrical and computer engineering at Cornell University, who was not involved in the research. “Because of the soft actuators’ inherent compliance, the robot can safely run into obstacles without greatly inhibiting flight. This feature is well-suited for flight in cluttered, dynamic environments and could be very useful for any number of real-world applications.”

Read More  Giving Robots Social Skills

Helbling adds that a key step toward those applications will be untethering the robots from a wired power source, which is currently required by the actuators’ high operating voltage. “I’m excited to see how the authors will reduce operating voltage so that they may one day be able to achieve untethered flight in real-world environments.”

Building insect-like robots can provide a window into the biology and physics of insect flight, a longstanding avenue of inquiry for researchers. Chen’s work addresses these questions through a kind of reverse engineering. “If you want to learn how insects fly, it is very instructive to build a scale robot model,” he says. “You can perturb a few things and see how it affects the kinematics or how the fluid forces change. That will help you understand how those things fly.” But Chen aims to do more than add to entomology textbooks. His drones can also be useful in industry and agriculture.

Chen says his mini-aerialists could navigate complex machinery to ensure safety and functionality. “Think about the inspection of a turbine engine. You’d want a drone to move around [an enclosed space] with a small camera to check for cracks on the turbine plates.”

Other potential applications include artificial pollination of crops or completing search-and-rescue missions following a disaster. “All those things can be very challenging for existing large-scale robots,” says Chen. Sometimes, bigger isn’t better.

By Daniel Ackerman | MIT News Office
Source MIT News

For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

liwaiwai.com

Related Topics
  • Drones
  • Insect Drone
  • MIT News
  • Robots
You May Also Like
Heat-resistant drone
View Post
  • Robotics
  • Technology

Heat-Resistant Drones To Support Firefighters

  • August 11, 2023
View Post
  • Artificial Intelligence
  • Robotics

Speaking Robot: Our New AI Model Translates Vision And Language Into Robotic Actions

  • August 2, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Research
  • Robotics
  • Science
  • Technology

“A Field Guide To AI: For Business, Institutions, Society & Political Economy” — Your Essential Companion In Navigating the World of Artificial Intelligence.

  • June 29, 2023
View Post
  • Artificial Intelligence
  • Data
  • Engineering
  • Research
  • Robotics
  • Technology

The Technical Architecture And Components Of A.I. Systems

  • June 8, 2023
View Post
  • Artificial Intelligence
  • Automation
  • Data
  • Research
  • Robotics
  • Technology

The Geography Of Artificial Intelligence

  • June 8, 2023
View Post
  • Robotics

Open-Source Platform Simulates Wildlife For Soft Robotics Designers

  • May 5, 2023
View Post
  • Artificial Intelligence
  • Data Science
  • Robotics
  • Technology

Humanity VS Intelligence VS Artificial Intelligence, And Areas Of Study

  • May 4, 2023
View Post
  • Research
  • Robotics

Biohybrid Robots: Recent Progress, Challenges, And Perspectives

  • April 24, 2023
A Field Guide To A.I.
Navigate the complexities of Artificial Intelligence and unlock new perspectives in this must-have guide.
Now available in print and ebook.

charity-water



Stay Connected!
LATEST
  • 1
    AI-Driven Tool Makes It Easy To Personalize 3D-Printable Models
    • September 22, 2023
  • 2
    Applying Generative AI To Product Design With BigQuery DataFrames
    • September 21, 2023
  • 3
    Combining AI With A Trusted Data Approach On IBM Power To Fuel Business Outcomes
    • September 21, 2023
  • Microsoft and Adobe 4
    Microsoft And Adobe Partner To Deliver Cost Savings And Business Benefits
    • September 21, 2023
  • 5
    Huawei Connect 2023: Accelerating Intelligence For Shared Success
    • September 20, 2023
  • 6
    Document AI Workbench Is Now Powered By Generative AI To Structure Document Data Faster
    • September 15, 2023
  • Data 7
    UK Space Sector Has Sights Set On Artificial Intelligence And Machine Learning Professionals
    • September 15, 2023
  • Intel Innovation 8
    Intel Innovation 2023
    • September 15, 2023
  • 9
    Introducing OpenAI Dublin
    • September 14, 2023
  • 10
    Microsoft And Oracle Expand Partnership To Deliver Oracle Database Services On Oracle Cloud Infrastructure In Microsoft Azure
    • September 14, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    Real-Time Ubuntu Is Now Available In AWS Marketplace
    • September 12, 2023
  • 2
    IBM Brings Watsonx To ESPN Fantasy Football With New Waiver Grades And Trade Grades
    • September 13, 2023
  • 3
    IBM Announced As A Sponsor Of 2023 U.N. Climate Change Conference (COP28)
    • September 13, 2023
  • 4
    NASA Shares Unidentified Anomalous Phenomena Independent Study Report
    • September 14, 2023
  • 5
    Bristol Set To Host UK’s Most Powerful Supercomputer To Turbocharge AI Innovation
    • September 13, 2023
  • /
  • Artificial Intelligence
  • Explore
  • About
  • Contact Us

Input your search keywords and press Enter.