Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • Artificial Intelligence

AI Names Colors Much As Humans Do

  • March 26, 2021
  • relay

What the research is:

Across the thousands of different languages spoken by humans, the way we use words to represent different colors is remarkably consistent. For example, many languages have two distinct words for red and orange, but no language has many distinct commonly used words for various tonalities of orange. (Of course, if you visit a paint store, you’ll see dozens of esoteric names for different shades of orange. But these are rarely used in daily conversation.)

Using mathematical tools, linguistic researchers have shown this consistency in color names is because humans optimize language to balance the need for accurate communication with a general biological drive toward minimizing effort. Having extra color words — cantaloupe or burnt sienna, for example — adds complexity without significantly improving how effectively people communicate with each other.

Facebook AI has now shown that cutting-edge AI systems behave similarly. When two artificial neural networks are tasked with creating a way to communicate with each other about what colors they see, they develop systems that balance complexity and accuracy much as people do.

The images on the left show two color-naming systems created entirely by neural networks. Each cluster represents a color denoted by a single word. (The color shown is the average of the RGB values of all color chips in the cluster.) The top-left panel illustrates a three-word AI naming system, while the top-right panel shows a three-word human naming system — namely that of Wobé, a language spoken in Niger-Congo. The bottom-left panel illustrates a five-word AI naming system and the bottom-right panel shows the five-word naming system of the Papuan language Bauzi.

We also found that in order for the color “language” used by these neural networks to be an optimal solution, it must use discrete symbols rather than continuous sounds. This leads to a fascinating speculation about how we communicate. Is it possible that our languages can be optimally structured only if they are made up of discrete symbols rather than, say, continuous whistling?

 

How it works:

We built two neural networks, a Speaker and a Listener, and tasked them with playing the “communication game” illustrated below. In each round of the game, the Speaker sees one color chip from a continuous color space and then produces a symbol (which can be considered a “word”). The Listener sees the same color chip but also a different one, known as a distractor.

Read More  Creating Better Virtual Backdrops For Video Calling, Remote Presence, And AR
This graphic shows a successful round of the communication game. Based on a given color chip, the Speaker neural network selects a word (in this case, “blap”) from its vocabulary. The Listener neural network receives the selected word, and must decide which color sample it refers to. In this figure, the Listener correctly chooses the chip in position one.

The Listener receives the word produced by the Speaker and then tries to point to the correct color chip. Initially, the Speaker produces words at random, but eventually these naturally come to denote areas of the color space. We repeated this experiment many times while varying the difficulty of the task by making target and distractor chips more similar or less so. These variations produced a number of different color-naming “vocabularies.”

At the end of training, we analyzed these vocabularies and consistently found that the neural networks developed color terms with properties similar to those of human languages. In particular, when organizing the resulting systems according to quantitative measures of complexity and accuracy—as we do in the chart below—we find that the distribution of the neural-network languages is virtually identical to that of real human languages. Moreover, both types of languages are near the boundary that formally defines the set of possible optimal balances between complexity and accuracy (the black line in the figure).

This chart shows color-naming systems created by human languages (shown in blue) and by neural networks (shown in orange). The black curve defines the theoretical limit on accuracy given complexity, as computed in “Efficient compression in color naming and its evolution.” Both human languages and neural network color-naming systems achieve near-optimal efficiency.

In further experiments, we removed various components of the simulation. We found that, crucially, when we allowed neural networks to communicate through continuous symbols instead of discrete ones, the optimal trade-off between complexity and accuracy no longer emerged. The networks still succeeded at the communication game, but their systems became highly inefficient.

 

Why it matters:

Language is perhaps humanity’s most unique feature, but we still have a poor understanding of many of its core properties. Our study shows that advanced AI models, such as the ones developed at Facebook, are useful not only for practical applications, but also as experimental tools to answer scientific questions about human language (and cognition in general).

Read More  Facebook AI’s Co-teaching Program To Increase Pathways Into AI For Diverse Candidates

Recent research in linguistics and cognitive science points to the fact that language is a highly efficient system—but how did it evolve to that state, and why? By studying and dissecting computational models that mimic natural behavior, as in our research, we can shed light on the precise conditions under which such an efficient communication system is likely to arise in nature.

The results are also exciting from the perspective of building AI systems that are able to communicate with us through natural language, as it shows that neural networks trained to collaborate to accomplish a common task can develop communication systems that share core properties of human language.

 

Read the full paper:

Communicating artificial neural networks develop efficient color-naming systems

Written By Marco Baroni, Research Scientist | Rahma Chaabouni, Research Assistant | Evgeny Kharitonov, Research Engineer | Emmanuel Dupoux, Research Scientist
Source Facebook AI Research

relay

Related Topics
  • Colors
  • Facebook AI
  • Facebook AI Research
You May Also Like
View Post
  • Artificial Intelligence
  • Software
  • Technology

Bard And ChatGPT — A Head To Head Comparison

  • March 31, 2023
View Post
  • Artificial Intelligence
  • Platforms

Modernize Your Apps And Accelerate Business Growth With AI

  • March 31, 2023
View Post
  • Artificial Intelligence
  • Technology

Unlocking The Secrets Of ChatGPT: Tips And Tricks For Optimizing Your AI Prompts

  • March 29, 2023
View Post
  • Artificial Intelligence
  • Technology

Try Bard And Share Your Feedback

  • March 29, 2023
View Post
  • Artificial Intelligence
  • Data
  • Data Science
  • Machine Learning
  • Technology

Google Data Cloud & AI Summit : In Less Than 12 Hours From Now

  • March 29, 2023
View Post
  • Artificial Intelligence
  • Technology

Talking Cars: The Role Of Conversational AI In Shaping The Future Of Automobiles

  • March 28, 2023
View Post
  • Artificial Intelligence
  • Tools

Document AI Introduces Powerful New Custom Document Classifier To Automate Document Processing

  • March 28, 2023
View Post
  • Artificial Intelligence
  • Design
  • Practices

How AI Can Improve Digital Security

  • March 27, 2023

Leave a Reply

Your email address will not be published. Required fields are marked *

Stay Connected!
LATEST
  • 1
    DBS Singapore: The Best Boasting To Be The Best For So Long, Humbled By Hubris
    • March 31, 2023
  • 2
    Bard And ChatGPT — A Head To Head Comparison
    • March 31, 2023
  • 3
    Modernize Your Apps And Accelerate Business Growth With AI
    • March 31, 2023
  • 4
    Why Your Open Source Project Needs A Content Strategy
    • March 31, 2023
  • 5
    From Raw Data To Actionable Insights: The Power Of Data Aggregation
    • March 30, 2023
  • 6
    Effective Strategies To Closing The Data-Value Gap
    • March 30, 2023
  • 7
    Unlocking The Secrets Of ChatGPT: Tips And Tricks For Optimizing Your AI Prompts
    • March 29, 2023
  • 8
    Try Bard And Share Your Feedback
    • March 29, 2023
  • 9
    Google Data Cloud & AI Summit : In Less Than 12 Hours From Now
    • March 29, 2023
  • 10
    Talking Cars: The Role Of Conversational AI In Shaping The Future Of Automobiles
    • March 28, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    Introducing GPT-4 in Azure OpenAI Service
    • March 21, 2023
  • 2
    Document AI Introduces Powerful New Custom Document Classifier To Automate Document Processing
    • March 28, 2023
  • 3
    How AI Can Improve Digital Security
    • March 27, 2023
  • 4
    ChatGPT 4.0 Finally Gets A Joke
    • March 27, 2023
  • 5
    Mr. Cooper Is Improving The Home-buyer Experience With AI And ML
    • March 24, 2023
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
  • About

Input your search keywords and press Enter.