Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • Artificial Intelligence
  • Software

An AI Software Able To Detect And Count Plastic Waste In The Ocean

  • April 1, 2021
  • Aelia Vita

It is both very clever and simple and you could use this same model for many image classification applications.

FMMLs

Odei Garcia-Garin et al. from the University of Barcelona have developed a deep learning-based algorithm able to detect and quantify floating garbage from aerial images. They also made a web-oriented application allowing users to identify these garbages, called floating marine macro-litter, or FMML, within images of the sea surface. Floating marine macro-litter is any persistent, manufactured, or processed solid material lost or abandoned in a marine compartment. As you most certainly know, these plastic wastes are dangerous for fish, turtles, and marine mammals as they can either ingest them or get entangled and hurt.


Partner with liwaiwai.com
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

How to get rid of FMMLs?

Traditional approaches to detecting these FMMLs are observer-based methods. Meaning that they require someone on a vessel or airplane to look for them, yielding to precise identification but extremely expensive and time-demanding labor. Fortunately, this detection can be done using cameras or sensors on aerial vehicles. But it also requires trained scientists to manually look at the collected data being again extremely time-consuming. Automation is needed here and could help us improve the quality of our marine compartments worldwide much more effectively.

Their method using deep learning

This is where machine learning and deep learning come into play. Deep learning proves over and over that it is a very powerful automation tool, and especially in the computer vision industry where it is known to automatically identify the important features of an image without any human supervision, making this approach less time-demanding than its predecessors. As you may suspect, they used convolutional neural networks to attack this problem. This type of neural network is the most commonly used deep learning architecture in computer vision. The idea behind this deep neural network architecture is to mimic the human’s visual system. If you want to learn more about the foundation of convolutional neural networks, or CNNs, I will refer you to this video where I’m explaining them more in-depth:

Read More  Global Economic Impact of AI: Facts and Figures

 

left: FMML aerial image example. Right: Water differences [1]

They trained their algorithm with aerial images like this one taken by drones and aircraft with annotations made by the same professionals that are usually manually analyzing them. This is a challenging task even for deep learning because of all the possible variations in colors and sun reflections.

The model [1]

In short, their model is a regular binary classifier CNN architecture composed of convolutions and pooling, terms that I explained in the video I referenced earlier, that outputs a binary response, telling us if there are FMMLs or not from an input image. The depth of the network is due to these convolution layers compressing the image and creating many feature maps, which are the outputs of the filters, ending with a general representation of the image allowing us to know “in general” what the image contains, such as FMML in this case. Note that this same architecture could have been used on any other computer vision application with the task to classify whether or not something is in the image, such as spotting a defect on a manufactured part or tell if there is a dog or not. What they did differently making it powerful to FMML detection is that they had the idea to split the image into 25 smaller cells that each outputs a classification result, FMML or not, yielding much better overall accuracy.

A web-based application!

The web-based application on R [2]

Then, they used the Shiny package of R to develop their application. Their algorithm allows the detection and quantification of FMML as well as providing support to the monitoring and assessment of this environmental threat. However, it is still not completely automated yet and requires a human-in-the-loop. As of now, they are still looking for more annotated aerial images to allow their algorithm to also identify the size, color, and type of FMML, which are relevant information for planning well-targeted policy and mitigation measures.

Read More  Artificial Intelligence Business Opportunities: 10 Steps To Implement

This is still an amazing application of deep learning with a great use case that will benefit everyone.

Of course, this was just an introduction to this new paper, and I linked both the paper [1] and their code [2] with their application in the references below if you would like to read more about it or even try it out.

Watch the video:

This article is republished from Towards AI by Louis (What’s AI) Bouchard.


For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

Aelia Vita

Related Topics
  • AI
  • Algorithmia
  • Artificial Intelligence
  • Environment
  • FMML
  • Waste
You May Also Like
View Post
  • Artificial Intelligence
  • Technology

NASA’s Mars Rovers Could Inspire A More Ethical Future For AI

  • September 26, 2023
View Post
  • Artificial Intelligence
  • Platforms

Oracle CloudWorld 2023: 6 Key Takeaways From The Big Annual Event

  • September 25, 2023
View Post
  • Artificial Intelligence

3 Ways AI Can Help Communities Adapt To Climate Change In Africa

  • September 25, 2023
Robotic Hand | Lights
View Post
  • Artificial Intelligence
  • Technology

Nvidia H100 Tensor Core GPUs Come To Oracle Cloud

  • September 24, 2023
View Post
  • Artificial Intelligence
  • Engineering
  • Technology

AI-Driven Tool Makes It Easy To Personalize 3D-Printable Models

  • September 22, 2023
View Post
  • Artificial Intelligence
  • Data

Applying Generative AI To Product Design With BigQuery DataFrames

  • September 21, 2023
View Post
  • Artificial Intelligence
  • Platforms

Combining AI With A Trusted Data Approach On IBM Power To Fuel Business Outcomes

  • September 21, 2023
Microsoft and Adobe
View Post
  • Artificial Intelligence
  • Machine Learning
  • Platforms

Microsoft And Adobe Partner To Deliver Cost Savings And Business Benefits

  • September 21, 2023
A Field Guide To A.I.
Navigate the complexities of Artificial Intelligence and unlock new perspectives in this must-have guide.
Now available in print and ebook.

charity-water



Stay Connected!
LATEST
  • 1
    NASA’s Mars Rovers Could Inspire A More Ethical Future For AI
    • September 26, 2023
  • 2
    Oracle CloudWorld 2023: 6 Key Takeaways From The Big Annual Event
    • September 25, 2023
  • 3
    3 Ways AI Can Help Communities Adapt To Climate Change In Africa
    • September 25, 2023
  • Robotic Hand | Lights 4
    Nvidia H100 Tensor Core GPUs Come To Oracle Cloud
    • September 24, 2023
  • 5
    AI-Driven Tool Makes It Easy To Personalize 3D-Printable Models
    • September 22, 2023
  • 6
    Applying Generative AI To Product Design With BigQuery DataFrames
    • September 21, 2023
  • 7
    Combining AI With A Trusted Data Approach On IBM Power To Fuel Business Outcomes
    • September 21, 2023
  • Microsoft and Adobe 8
    Microsoft And Adobe Partner To Deliver Cost Savings And Business Benefits
    • September 21, 2023
  • Coffee | Laptop | Notebook | Work 9
    First HP Work Relationship Index Shows Majority of People Worldwide Have an Unhealthy Relationship with Work
    • September 20, 2023
  • 10
    Huawei Connect 2023: Accelerating Intelligence For Shared Success
    • September 20, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • Intel Innovation 1
    Intel Innovation 2023
    • September 15, 2023
  • 2
    Microsoft And Oracle Expand Partnership To Deliver Oracle Database Services On Oracle Cloud Infrastructure In Microsoft Azure
    • September 14, 2023
  • 3
    Real-Time Ubuntu Is Now Available In AWS Marketplace
    • September 12, 2023
  • 4
    IBM Brings Watsonx To ESPN Fantasy Football With New Waiver Grades And Trade Grades
    • September 13, 2023
  • 5
    Document AI Workbench Is Now Powered By Generative AI To Structure Document Data Faster
    • September 15, 2023
  • /
  • Artificial Intelligence
  • Explore
  • About
  • Contact Us

Input your search keywords and press Enter.