Liwaiwai Liwaiwai



Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • Machine Learning
  • Research

Machine Learning Algorithm Predicts How To Get The Most Out Of Electric Vehicle Batteries

  • January 7, 2023
  • relay

Researchers have developed a machine learning algorithm that could help reduce charging times and prolong battery life in electric vehicles by predicting how different driving patterns affect battery performance, improving safety and reliability.

This method could unlock value in so many parts of the supply chain, whether you’re a manufacturer, an end user, or a recycler, because it allows us to capture the health of the battery beyond a single number

Alpha Lee

The researchers, from the University of Cambridge, say their algorithm could help drivers, manufacturers and businesses get the most out of the batteries that power electric vehicles by suggesting routes and driving patterns that minimise battery degradation and charging times.

The team developed a non-invasive way to probe batteries and get a holistic view of battery health. These results were then fed into a machine learning algorithm that can predict how different driving patterns will affect the future health of the battery.

If developed commercially, the algorithm could be used to recommend routes that get drivers from point to point in the shortest time without degrading the battery, for example, or recommend the fastest way to charge the battery without causing it to degrade. The results are reported in the journal Nature Communications.

The health of a battery, whether it’s in a smartphone or a car, is far more complex than a single number on a screen. “Battery health, like human health, is a multi-dimensional thing, and it can degrade in lots of different ways,” said first author Penelope Jones, from Cambridge’s Cavendish Laboratory. “Most methods of monitoring battery health assume that a battery is always used in the same way. But that’s not how we use batteries in real life. If I’m streaming a TV show on my phone, it’s going to run down the battery a whole lot faster than if I’m using it for messaging. It’s the same with electric cars – how you drive will affect how the battery degrades.”

“Most of us will replace our phones well before the battery degrades to the point that it’s unusable, but for cars, the batteries need to last for five, ten years or more,” said Dr Alpha Lee, who led the research. “Battery capacity can change drastically over that time, so we wanted to come up with a better way of checking battery health.”

The researchers developed a non-invasive probe that sends high-dimensional electrical pulses into a battery and measures the response, providing a series of ‘biomarkers’ of battery health. This method is gentle on the battery and doesn’t cause it to degrade any further.

The electrical signals from the battery were converted into a description of the battery’s state, which was fed into a machine learning algorithm. The algorithm was able to predict how the battery would respond in the next charge-discharge cycle, depending on how quickly the battery was charged and how fast the car would be going the next time it was on the road. Tests with 88 commercial batteries showed that the algorithm did not require any information about previous usage of the battery to make an accurate prediction.

The experiment focused on lithium cobalt oxide (LCO) cells, which are widely used in rechargeable batteries, but the method is generalisable across the different types of battery chemistries used in electric vehicles today.

“This method could unlock value in so many parts of the supply chain, whether you’re a manufacturer, an end user, or a recycler, because it allows us to capture the health of the battery beyond a single number, and because it’s predictive,” said Lee. “It could reduce the time it takes to develop new types of batteries, because we’ll be able to predict how they will degrade under different operating conditions.”

The researchers say that in addition to manufacturers and drivers, their method could be useful for businesses that operate large fleets of electric vehicles, such as logistics companies. “The framework we’ve developed could help companies optimise how they use their vehicles to improve the overall battery life of the fleet,” said Lee. “There’s so much potential with a framework like this.”

“It’s been such an exciting framework to build because it could solve so many of the challenges in the battery field today,” said Jones. “It’s a great time to be involved in the field of battery research, which is so important in helping address climate change by transitioning away from fossil fuels.”

The researchers are now working with battery manufacturers to accelerate the development of safer, longer-lasting next-generation batteries. They are also exploring how their framework could be used to develop optimal fast charging protocols to reduce electric vehicle charging times without causing degradation.

The research was supported by the Winton Programme for the Physics of Sustainability, the Ernest Oppenheimer Fund, The Alan Turing Institute and the Royal Society.

Reference:
Penelope K Jones, Ulrich Stimming & Alpha A Lee. ‘Impedance-based forecasting of lithium-ion battery performance amid uneven usage.’ Nature Communications (2022). DOI: 10.1038/s41467-022-32422-w

 

Source: University of Cambridge

relay

Related Topics
  • Machine Learning
  • University of Cambridge
You May Also Like
View Post
  • Data
  • Machine Learning

8 Best Human Behaviour Datasets For Machine Learning

  • January 30, 2023
View Post
  • Artificial Intelligence
  • Data
  • Machine Learning

Built With BigQuery: How To Accelerate Data-Centric AI Development With Google Cloud And Snorkel AI

  • January 29, 2023
View Post
  • Artificial Intelligence
  • Machine Learning

AI Might Be Seemingly Everywhere, But There Are Still Plenty Of Things It Can’t Do—for now

  • January 27, 2023
View Post
  • Machine Learning
  • Technology

GPT-3’s Next Mark: Diagnosing Alzheimer’s Through Speech

  • January 16, 2023
View Post
  • Artificial Intelligence
  • Engineering
  • Machine Learning
  • Practices

Debunking 4 Common Myths About Machine Learning

  • January 12, 2023
View Post
  • Artificial Intelligence
  • Research
  • Technology

How Artificial Intelligence Is Helping Us Decode Animal Languages

  • January 11, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Platforms
  • Technology

IT Prediction: AI Could Help Realize The Dream Of The Four-Day Work Week

  • January 9, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Technology

Book: AI Is Cool, But Nowhere Near Human Capacity

  • January 8, 2023
Stay Connected!
LATEST
  • 1
    Microsoft‘s Big AI Ambitions Go Beyond Just OpenAI And ChatGPT
    • February 3, 2023
  • 2
    Deepfakes: Faces Created By AI Now Look More Real Than Genuine photos
    • February 3, 2023
  • 3
    GPT-3 In Your Pocket? Why Not!
    • February 3, 2023
  • 4
    Can AI Replace Cloud Architects?
    • February 2, 2023
  • 5
    Meet Aiko And Aiden: The World’s First AI Interns
    • February 2, 2023
  • 6
    Google Scrambles To Catch Up In The Wake Of OpenAI’s ChatGPT
    • January 31, 2023
  • 7
    9 Ways We Use AI In Our Products
    • January 31, 2023
  • 8
    Google Cloud Unveils New AI Tools for Retailers
    • January 31, 2023
  • 9
    7 Ways Google Is Using AI To Help Solve Society’s Challenges
    • January 30, 2023
  • 10
    The Ethics Of Machine Learning: Understanding The Role Of Developers And Designers
    • January 30, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    8 Best Human Behaviour Datasets For Machine Learning
    • January 30, 2023
  • 2
    Built With BigQuery: How To Accelerate Data-Centric AI Development With Google Cloud And Snorkel AI
    • January 29, 2023
  • 3
    What Kind Of Future Will AI Bring Enterprise IT?
    • January 29, 2023
  • 4
    Prompt Engineering For ChatGPT And Generative AI
    • January 29, 2023
  • 5
    AI Might Be Seemingly Everywhere, But There Are Still Plenty Of Things It Can’t Do—for now
    • January 27, 2023
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
  • About

Input your search keywords and press Enter.