Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • Artificial Intelligence

From Hobart, To London, To Dhaka: Using Cameras And AI To Build An Automatic Litter Detection System

  • December 16, 2020
  • admin

It’s estimated about two million tonnes of plastics enter the oceans from rivers each year. But our waterways aren’t just conveyor belts transporting land waste to the oceans: they also capture and retain litter.


Partner with liwaiwai.com
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

Currently, the most common method for monitoring litter relies on humans conducting on-ground visual counts. This process is labour-intensive and makes it difficult to monitor many locations simultaneously or over extended periods.

As part of CSIRO’s research to end plastic waste, we’ve been developing an efficient and scalable environmental monitoring system using artificial intelligence (AI).

The system, which is part of a larger pilot with the City of Hobart, uses AI-based image recognition to track litter in waterways.

 

Global insights help build a reliable model

The technology is underpinned by two branches of AI: computer vision and deep learning. Computer vision involves training computers to understand and interpret images and videos, whereas deep learning imitates how our brains process data.

Drawing on these capabilities, we worked in partnership with Microsoft (using its Azure cloud computing services) to develop an automated system for monitoring river litter.

We have been detecting and classifying items floating on the surface of Hobart’s stormwater channels, the River Thames in the UK and the Buriganga River in Bangladesh.

We’ve remotely analysed the amount of litter, the type of litter and how this changes across locations.

CSIRO research scientist Chris Wilcox setting up a fixed camera to monitor litter in Hobart.

 

Major damage from food packaging and bottles

Our work relies heavily on two applications of computer vision. These are “object detection” and “image classification”.

Object detection specifies the location of a particular object in an image and assigns it a label. Image classification assigns one or more labels to the image as a whole.

Read More  400% Increase In Demand For AI Email Security, As Cyber Threat Escalates

Before either of these models can be applied reliably, however, they have to be trained, tested and validated using a large number of labelled images. For this, we drew from our footage of river litter collected from Hobart, London and Dhaka.

Our dataset now contains more than 6,100 images with 14,500 individual items. The items are labelled across more than 30 categories including plastic bottles, packaging, beverage cans, paper and plastic cups.

Our data revealed food packaging, beverage bottles and cups were by far the most frequently spotted litter items across all three countries.

Aeriel view of the Buriganga River in Dhaka, Bangladesh.
The Buriganga river flows by Dhaka. It’s one of Bangladesh’s most polluted rivers due to the ongoing dumping of industrial waste (such as from leather tanneries) and human waste. Image: Shutterstock

 

Fake images aren’t always harmful

To build a well-performing machine learning model, we needed a balanced set of training images featuring all item categories — even if certain categories are more frequent in real life.

Introducing synthetic (computer generated) images to our dataset was a game changer.

These images were generated by Microsoft’s synthetics team based in Seattle. They rendered various objects and superimposed them over backgrounds obtained from our field photos.

Once the digital objects were created, the superimposition process was automatic. Thus, the team managed to produce thousands of synthetic pictures over just a few weeks, rapidly expanding our training dataset.

In this synthetic image, the transparent cup, face mask and aerosol container are digital renderings superimposed over an original photo taken by one of our cameras.

 

How are objects identified?

There are a few steps by which our system identifies litter objects in photos. First, the photos are all scored against a single-label (“trash”) object detector. This identifies items of litter in the frame and stores their coordinates as annotations.

These coordinates are then used to isolate the items and score them against an image classifier which includes all the litter categories.

Read More  Internet Data Produce A Racist, Sexist Robot

Finally, the model presents the category it thinks the item most likely belongs to, along with a suggested probability for how accurate this guess is.

Here’s an example of the system detecting a water bottle and packaging as trash, and then placing both items into their respective categories. Probabilities are provided for the likely accuracy of the system’s guess regarding an item’s classification.

An AI-driven approach to litter management allows a quicker response than a manual system. But when it comes to litter, the major challenge lies in creating a model that can account for millions of different shapes, colours and sizes.

We wanted to build a flexible model that could be transferred to new locations and across different river settings, including smaller streams (such as Hobart’s stormwater system) and large urban rivers (such as the River Thames or the Buriganga River).

This way, rather than building new models for each location, we only have to deploy more cameras. Data retrieved could help identify litter hot spots, implement better waste-related policies and improve waste management methods to make them safer, smarter and relatively cheaper.

 

Keeping an eye on Hobart’s litter

We’ve also been collaborating with the City of Hobart to develop an autonomous sensor network to monitor gross pollutant traps, such as floating barriers or litter socks.

These structures, integrated into Hobart’s stormwater drainage system, are supposed to prevent solid waste such as cans, bottles, tree branches and leaves from reaching the estuary and ocean.

We currently have a network of sensors and six cameras installed under bridges tracking litter in the traps. The system can inform an operator when a trap requires emptying, or other maintenance.

Once in full use, the technology will provide almost real-time monitoring of litter around Hobart — assisting efforts to reduce environmental harm caused by stagnant, and potentially hazardous, waste lost to the environment.

Read More  Will AI Ever Reach Human-Level Intelligence? We Asked 5 Experts

 

Arianna Olivelli, Research Affiliate, CSIRO and Uwe Rosebrock, Senior Software Engineer, CSIRO

This article is republished from The Conversation under a Creative Commons license. Read the original article.


For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

admin

Related Topics
  • Automatic Litter Detection System
  • Drainage Systems
  • Litter Detection System
  • Pollution
  • Waste
You May Also Like
View Post
  • Artificial Intelligence
  • Technology

NASA’s Mars Rovers Could Inspire A More Ethical Future For AI

  • September 26, 2023
View Post
  • Artificial Intelligence
  • Platforms

Oracle CloudWorld 2023: 6 Key Takeaways From The Big Annual Event

  • September 25, 2023
View Post
  • Artificial Intelligence

3 Ways AI Can Help Communities Adapt To Climate Change In Africa

  • September 25, 2023
Robotic Hand | Lights
View Post
  • Artificial Intelligence
  • Technology

Nvidia H100 Tensor Core GPUs Come To Oracle Cloud

  • September 24, 2023
View Post
  • Artificial Intelligence
  • Engineering
  • Technology

AI-Driven Tool Makes It Easy To Personalize 3D-Printable Models

  • September 22, 2023
View Post
  • Artificial Intelligence
  • Data

Applying Generative AI To Product Design With BigQuery DataFrames

  • September 21, 2023
View Post
  • Artificial Intelligence
  • Platforms

Combining AI With A Trusted Data Approach On IBM Power To Fuel Business Outcomes

  • September 21, 2023
Microsoft and Adobe
View Post
  • Artificial Intelligence
  • Machine Learning
  • Platforms

Microsoft And Adobe Partner To Deliver Cost Savings And Business Benefits

  • September 21, 2023
A Field Guide To A.I.
Navigate the complexities of Artificial Intelligence and unlock new perspectives in this must-have guide.
Now available in print and ebook.

charity-water



Stay Connected!
LATEST
  • 1
    NASA’s Mars Rovers Could Inspire A More Ethical Future For AI
    • September 26, 2023
  • 2
    Oracle CloudWorld 2023: 6 Key Takeaways From The Big Annual Event
    • September 25, 2023
  • 3
    3 Ways AI Can Help Communities Adapt To Climate Change In Africa
    • September 25, 2023
  • Robotic Hand | Lights 4
    Nvidia H100 Tensor Core GPUs Come To Oracle Cloud
    • September 24, 2023
  • 5
    AI-Driven Tool Makes It Easy To Personalize 3D-Printable Models
    • September 22, 2023
  • 6
    Applying Generative AI To Product Design With BigQuery DataFrames
    • September 21, 2023
  • 7
    Combining AI With A Trusted Data Approach On IBM Power To Fuel Business Outcomes
    • September 21, 2023
  • Microsoft and Adobe 8
    Microsoft And Adobe Partner To Deliver Cost Savings And Business Benefits
    • September 21, 2023
  • Coffee | Laptop | Notebook | Work 9
    First HP Work Relationship Index Shows Majority of People Worldwide Have an Unhealthy Relationship with Work
    • September 20, 2023
  • 10
    Huawei Connect 2023: Accelerating Intelligence For Shared Success
    • September 20, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • Intel Innovation 1
    Intel Innovation 2023
    • September 15, 2023
  • 2
    Microsoft And Oracle Expand Partnership To Deliver Oracle Database Services On Oracle Cloud Infrastructure In Microsoft Azure
    • September 14, 2023
  • 3
    Real-Time Ubuntu Is Now Available In AWS Marketplace
    • September 12, 2023
  • 4
    IBM Brings Watsonx To ESPN Fantasy Football With New Waiver Grades And Trade Grades
    • September 13, 2023
  • 5
    Document AI Workbench Is Now Powered By Generative AI To Structure Document Data Faster
    • September 15, 2023
  • /
  • Artificial Intelligence
  • Explore
  • About
  • Contact Us

Input your search keywords and press Enter.