Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • Artificial Intelligence
  • Data

Using AI to Solve Complex Global Supply Chain Management Challenges

  • December 24, 2018
  • admin

Companies are starting to apply artificial intelligence across global supply chain management to improve efficiency, speed and decision-making in areas such as supply chain planning, warehouse automation, and logistics.

The SCM World 2016 Future of Supply Chain Survey found that the importance of artificial intelligence has grown rapidly, with 47 percent of supply chain leaders believing the technology is disruptive to global supply chain management strategies. Market-research firm IDC predicts that by 2020, 50 percent of mature supply chains will use AI and advanced analytics for planning, and to eliminate sole reliance on short-term demand forecasts.

AI for Global Supply Chain Management Planning

Supply chain planning and optimization, including demand forecasting, are among the key areas where AI is already beginning to be deployed. Experts say that global supply chains have become so complex, and are affected by so many variables, that AI may be essential to help identify and predict problems and potential solutions.

“Supply chain managers must take into account more data than any person can possibly process,” Nucleus Research analyst Seth Lippincott told EBN. As IDC analyst Simon Ellis (writing on an IBM blog) put it: “Most companies simply do not understand the full depth and breadth of their supply chain risks, and are therefore not prepared to respond efficiently or effectively to the many potential disruptions.” The inherent complexity of global supply chains, along with the dramatically increased volume of data, make it almost impossible to extract all the necessary insights and make informed business decisions. And the volume of data continues to increase, in part due to the trend to connect supply chain management devices to the Internet, according to DHL’s 2016 Logistics Trends Radar report.

Read More  How AI And Weather Data Can Help You Plan For Allergy Season

Accordingly, companies are already applying AI-based machine learning to automatically analyze vast amounts of supply-chain management data, identify trends, and generate predictive analytics — the ability to predict problems and outcomes. Lippincott says that the benefits in global supply chain management include reductions in forecasting errors. “Software solutions are beginning to apply machine learning capabilities that can automatically detect errors and make course corrections, while processing real-time data streams,” he says. “With companies collecting mountains of data that can be used to train algorithms to learn where things went wrong, we’re at the tip of the iceberg of how much companies will leverage these capabilities.”

For example, some supply chain management solutions use AI to gather and correlate external data from many sources, including social media, newsfeeds, weather forecasts and historical data.

One major food manufacturer used an AI-based demand forecasting solution to tackle a common problem: meeting customer demand while minimizing inventory. The challenge was complex, involving around 10,000 different products, each subject to variation in demand. By applying predictive analytics, the company was able to more accurately anticipate customer behavior by integrating the impact of promotions and other special offers into its statistical models.9

In a 2016 survey of 1,100 supply chain and manufacturing companies by Deloitte and MHI, only 17 percent of companies were using predictive analytics; but that number is expected to jump to 79 percent over the next three to five years.

Anticipating Orders Before they are Placed

Predictive algorithms may also enable “anticipatory logistics” — the ability to shorten delivery times and improve efficiency by predicting demand before a request or order is even placed, as global logistics provider DHL described in Logistics Trends Radar. For example, global supply chain managers could use AI systems to detect risks in trade shipping lanes and, using shock-detecting sensors, potential damages to cargo; they could then take corrective action and minimize operational delays.

Read More  Why 87% Of Machine Learning Projects Fail

Supply chain managers who have analyzed their customers’ purchasing behaviors might move goods to distribution centers that are closer to the customer, allowing faster delivery. Within warehouses, machine learning systems may be able to recognize common scenarios and trends, and link these to specific customers and orders; anticipating the content of an order, these systems would then pre-pick-and-pack without first waiting for orders to be placed, according to the DHL report.

Robots and Self-Driving Vehicles

Autonomous vehicles, which rely on AI to sense their surroundings and make decisions, have already made inroads into logistics, although large-scale adoption may be several years away, according to DHL. Self-driving vehicles have been gradually adopted in controlled environments such as warehouses and yards; DHL predicts that warehouses of the future will deploy the next generation of self-driving vehicles, such as autonomous forklifts, carts and pallet movers, which will be able to navigate without the aid of magnetic strips or other guides. The use of goods-delivery drones and other vehicles in public spaces is farther from mainstream adoption, the company notes. Robots are also being used by big online retailers and logistics companies to quickly help pick and stack goods.

The Takeaway

Artificial intelligence is starting to be used in global supply chain management to help companies analyze and act on global supply chains’ vast data. However, while experts consider machine learning and other AI technologies important and disruptive, they note challenges such as the technology skills required, the need to integrate multiple data sources, and regulatory hurdles that may need to be overcome to enable widespread adoption.

Read More  Stanford Researchers Use AI To Empower Environmental Regulators

 

This feature is written by Mike Fadden & originally appeared in American Express.

 


Namecheap
Namecheap

admin

Related Topics
  • Data
  • Logistics
  • Supply Chain
You May Also Like
View Post
  • Artificial Intelligence
  • Software
  • Technology

Bard And ChatGPT — A Head To Head Comparison

  • March 31, 2023
View Post
  • Artificial Intelligence
  • Platforms

Modernize Your Apps And Accelerate Business Growth With AI

  • March 31, 2023
View Post
  • Big Data
  • Data
  • Design

From Raw Data To Actionable Insights: The Power Of Data Aggregation

  • March 30, 2023
View Post
  • Data
  • Design
  • Engineering

Effective Strategies To Closing The Data-Value Gap

  • March 30, 2023
View Post
  • Artificial Intelligence
  • Technology

Unlocking The Secrets Of ChatGPT: Tips And Tricks For Optimizing Your AI Prompts

  • March 29, 2023
View Post
  • Artificial Intelligence
  • Technology

Try Bard And Share Your Feedback

  • March 29, 2023
View Post
  • Artificial Intelligence
  • Data
  • Data Science
  • Machine Learning
  • Technology

Google Data Cloud & AI Summit : In Less Than 12 Hours From Now

  • March 29, 2023
View Post
  • Artificial Intelligence
  • Technology

Talking Cars: The Role Of Conversational AI In Shaping The Future Of Automobiles

  • March 28, 2023

Leave a Reply

Your email address will not be published. Required fields are marked *

Stay Connected!
LATEST
  • 1
    DBS Singapore: The Best Boasting To Be The Best For So Long, Humbled By Hubris
    • March 31, 2023
  • 2
    Bard And ChatGPT — A Head To Head Comparison
    • March 31, 2023
  • 3
    Modernize Your Apps And Accelerate Business Growth With AI
    • March 31, 2023
  • 4
    Why Your Open Source Project Needs A Content Strategy
    • March 31, 2023
  • 5
    From Raw Data To Actionable Insights: The Power Of Data Aggregation
    • March 30, 2023
  • 6
    Effective Strategies To Closing The Data-Value Gap
    • March 30, 2023
  • 7
    Unlocking The Secrets Of ChatGPT: Tips And Tricks For Optimizing Your AI Prompts
    • March 29, 2023
  • 8
    Try Bard And Share Your Feedback
    • March 29, 2023
  • 9
    Google Data Cloud & AI Summit : In Less Than 12 Hours From Now
    • March 29, 2023
  • 10
    Talking Cars: The Role Of Conversational AI In Shaping The Future Of Automobiles
    • March 28, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    Introducing GPT-4 in Azure OpenAI Service
    • March 21, 2023
  • 2
    Document AI Introduces Powerful New Custom Document Classifier To Automate Document Processing
    • March 28, 2023
  • 3
    How AI Can Improve Digital Security
    • March 27, 2023
  • 4
    ChatGPT 4.0 Finally Gets A Joke
    • March 27, 2023
  • 5
    Mr. Cooper Is Improving The Home-buyer Experience With AI And ML
    • March 24, 2023
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
  • About

Input your search keywords and press Enter.