
A report by a panel of leading experts on technology, business, and cities takes a deep dive into the changes that will come about as a result of one key new technology—artificial intelligence.
The panel was chaired by Peter Stone of University of Texas at Austin along with researchers from Rethink Robotics, Allen Institute for AI, Microsoft, and academics from Harvard, MIT, Johns Hopkins, Columbia, UC Berkeley, and other universities from around the world. Their study, Artificial Intelligence and Life in 2030, outlines the dramatic impact artificial intelligence (AI) is having and will continue to have for our cities and the way we live and work in them over the next couple of decades. It outlines the implications of several key dimensions of AI, including:
- Large-scale learning or algorithms that crunch ever-larger datasets
- Deep learning procedures that recognize images, video, audio, speech, and language
- Reinforcement learning that shifts from pattern recognition to experience-driven decision-making
- Robotic devices that can physically interact with environments and people
- Computer vision that allows computers to see and perform tasks better than people
- Natural language processing that does more than react to requests—it communicates through speech
- Collaborative systems, crowdsourcing, and human computation
- Algorithms and computational tools that can apply economic and social data to realign incentives for people and businesses
- The “Internet of Things” that networks appliances, vehicles, buildings, and cameras
- Neuromorphic computing that mimics biological neural networks to improve the efficiency and robustness of computer systems
The report outlines what these technologies mean for cities and raises deep policy (and downright philosophical) questions about their impact across several areas of urban life. Here are a few thoughts reflecting on what this new technological might promise for cities.
Transportation—more than driverless cars
Everyone and their mother is talking about autonomous vehicles, or AVs, which are already being tested on the streets of several cities, including Pittsburgh. The potential relief from traffic congestion and the tragedy of human error on the road make this a top priority for the dream of personal transportation. But technical, economic, and ethical questions about our autonomous future abound—from the possible (major) glitch of pedestrian deaths to the potential job losses from automation to the possible fatal erosion of public transportation. We need to be ready for the next time the car transforms the city.
Artificial intelligence could also help systems be more dynamic. Real-time information, machine learning, and algorithms could turn public transportation into a much more vibrant public good, eliminating much of the current frustrations and frictions they generate now. AI could allow us to better allocate resources to make transportation more reliable and more equitable.
Public safety and privacy
Cities have already begun to deploy a wide variety of AI technologies for security purposes. Expect those trends to continue through to 2030. Analytics have successfully helped combat white collar crime, such as credit-card fraud, and could also prove useful in preventing cyber-crimes in the future. These technologies might not only help police departments solve crimes with less effort but also could assist crime prevention and prosecution by improving record keeping and automatically processing video for anomalies (including evidence of abusive policing).
Work and life
Artificial intelligence also portends major changes to health care, education, home care, and related services. AI may enable more efficient economic development of so called “low-resource communities” that have higher rates of poverty, joblessness, and therefore have limited funds for public programs and infrastructure. With data mining leading incentives and priorities, there’s promise to the idea that AI might unburden systems with limited resources and allocate resources better. Algorithms could connect restaurants to food banks to turn excess in to resources or connect the unemployed to jobs, for example. Harnessing social networks could also help distribute health-related information and address homelessness.
The way forward
AI brings a contradictory future to our cities. On the hand, tech-optimists see technology like autonomous vehicles, mobile healthcare, and robot teachers freeing us from mundane chores like commuting and waiting in doctor’s offices and making our cities better, more inclusive and sustainable places. On the other hand, techno-pessimists see a dystopian future where AI and robots take away jobs and we live in a state of perpetual surveillance.
This article is written by Richard Florida and originally appeared in CityLab.

