Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • Data
  • Machine Learning
  • Platforms
  • Technology

Google Cloud Next 2019 | Machine Learning Framework for Liquidity Risk Management

  • June 4, 2019
  • admin

Google Cloud Next 2019 | Financial Services Sessions

Google Cloud Next 2019 | Machine Learning Framework for Liquidity Risk Management

Financial models have always been impacted by the lack of data (or many highly noisy data), by necessary mathematical simplifications such as normality or linearity assumptions and by a limited ability to use a wide set of features to better describe the problem and have greater predictive power. This is true in risk management, trading and portfolio construction, but even more so in liquidity models. Liquidity is a multi-dimensional beast that economists, quants and statisticians have tried to understand for several decades. This type of problem has a very high dimensionality and highly non-linear patterns and very sparse data.

The nature of the problem lends itself to be faced with machine learning techniques.

We have therefore decided over the years to test some of these techniques in the calibration of models for liquidity.

In this research, leveraging GPUs and cloud, we focused on the estimation of market liquidity, in particular of the transaction cost.

In this research, we tested random forests and neural networks for the estimation of tradable volumes showing a significant increase in the out-of-sample performances. We are now extending the experiment to the entire transaction cost and not to a single component of it by testing deep learning and in particular deep reinforcement learning.

In the application of these more advanced and complex techniques, we are paying particular attention to the ongoing research on the interpretability (XAI), which is a necessary condition and not yet completely resolved for extensive use of Deep Learning in finance.

Speaker(s): Stefano Pasquali

Session ID: MLAI232

Citi I/O

Read More  Developing High-Quality ML Solutions

Aster.Cloud

DotLAH!

admin

Related Topics
  • Google
  • Google Cloud
  • Google Cloud Next 2019
  • Science
  • Technology
You May Also Like
View Post
  • Data
  • Platforms
  • Technology

How Osmo Is Digitizing Smell With Google Cloud AI Technology

  • March 20, 2023
View Post
  • Data
  • Engineering
  • Tools

Built With BigQuery: How Sift Delivers Fraud Detection Workflow Backtesting At Scale

  • March 20, 2023
View Post
  • Platforms
  • Technology

Building The Most Open And Innovative AI Ecosystem

  • March 20, 2023
View Post
  • Data

Understand And Trust Data With Dataplex Data Lineage

  • March 17, 2023
View Post
  • Artificial Intelligence
  • Technology

Limits To Computing: A Computer Scientist Explains Why Even In The Age Of AI, Some Problems Are Just Too Difficult

  • March 17, 2023
View Post
  • Big Data
  • Data

The Benefits And Core Processes Of Data Wrangling

  • March 17, 2023
View Post
  • Technology

We Cannot Even Agree On Dates…

  • March 17, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Platforms
  • Technology

Using ML To Predict The Weather And Climate Risk

  • March 16, 2023

Leave a Reply

Your email address will not be published. Required fields are marked *

Stay Connected!
LATEST
  • 1
    How Osmo Is Digitizing Smell With Google Cloud AI Technology
    • March 20, 2023
  • 2
    Built With BigQuery: How Sift Delivers Fraud Detection Workflow Backtesting At Scale
    • March 20, 2023
  • 3
    Building The Most Open And Innovative AI Ecosystem
    • March 20, 2023
  • 4
    Understand And Trust Data With Dataplex Data Lineage
    • March 17, 2023
  • 5
    Limits To Computing: A Computer Scientist Explains Why Even In The Age Of AI, Some Problems Are Just Too Difficult
    • March 17, 2023
  • 6
    The Benefits And Core Processes Of Data Wrangling
    • March 17, 2023
  • 7
    We Cannot Even Agree On Dates…
    • March 17, 2023
  • 8
    Financial Crisis: It’s A Game & We’re All Being Played
    • March 17, 2023
  • 9
    Using ML To Predict The Weather And Climate Risk
    • March 16, 2023
  • 10
    Google Is A Leader In The 2023 Gartner® Magic Quadrant™ For Enterprise Conversational AI Platforms
    • March 16, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    The Future Of AI Is Promising Yet Turbulent
    • March 16, 2023
  • 2
    ChatGPT: How To Prevent It Becoming A Nightmare For Professional Writers
    • March 16, 2023
  • 3
    Midjourney Selects Google Cloud To Power AI-Generated Creative Platform
    • March 8, 2023
  • 4
    A Guide To Managing Your Agile Engineering Team
    • March 15, 2023
  • 5
    10 Ways Wikimedia Does Developer Advocacy
    • March 15, 2023
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
  • About

Input your search keywords and press Enter.