Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • Machine Learning

Machine Learning Technique Sharpens Prediction Of Material’s Mechanical Properties

  • March 18, 2020
  • admin

Scientists at Nanyang Technological University, Singapore (NTU Singapore), Massachusetts Institute of Technology (MIT), and Brown University have developed new approaches that significantly improve the accuracy of an important material testing technique by harnessing the power of machine learning.

Illustration.jpg
Credit: MIT

Nano-indentation – the process of poking a sample of a material with a sharp needle-like tip to see how the material responds by deforming – is important in many manufacturing applications, but its poor accuracy in obtaining certain key mechanical properties of a material, has prevented it from being used widely in industry.

Using the standard nano-indentation process and feeding its experimentally-measured data to a neural network machine learning system, the scientists developed and ‘trained’ the system to predict samples’ yield strength 20 times more accurately than existing methods.

The new analytical technique could reduce the need for time-consuming and costly computer simulations, to ensure that manufactured parts used in structural applications such as airplanes and automobiles, and those made from digital manufacturing techniques such as 3D printing are safe to use in real-life conditions.

The senior corresponding author of this paper, NTU Distinguished University Professor Subra Suresh, who is also the university president, said: “By incorporating the latest advances in machine learning with nano-indentation, we have shown that it is possible to improve the precision of the estimates of material properties by as much as 20 times. We have also validated this system’s predictive capability and accuracy enhancement on conventionally manufactured aluminum alloys and 3D-printed titanium alloys. This points to our method’s potential for digital manufacturing applications in Industry 4.0, especially in areas such as 3D-printing.”

Read More  Inside Two MIT Students’ Historic BattleBots Runs

The findings were published in the Proceedings of the National Academy of Sciences of the United States of America.

Material benefits from a hybrid approach

The method, developed by the team of researchers from NTU, MIT, and Brown, is a hybrid approach that combines machine learning with state-of-the-art nano-indentation techniques (See illustration in the Note to Editors).

The process first starts with pressing a hard tip – typically made of a material like diamond – into the sample material at a controlled rate with precisely calibrated force, while constantly measuring the penetration depth of the tip into the material being deformed.

The challenge arises because the process of decoding the resulting experimentally-measured data is extremely complex and is currently preventing the widespread use of the nano-indentation testing technique, in the manufacturing of aircraft and automobiles, according to NTU Professor Upadrasta Ramamurty, who holds the President’s Chair in Mechanical and Aerospace Engineering and Materials Science and Engineering at NTU.

To improve accuracy in such situations, the NTU-MIT-Brown team developed an advanced neural network – a computing system modelled loosely on the human brain – and ‘trained’ it with a combination of real experimental data and computer-generated data. Their “multi-fidelity” approach real experimental data as well as physics-based and computationally simulated “synthetic” data (from both two-dimensional and three-dimensional computer simulations) with deep learning algorithms.

MIT principal research scientist and NTU Visiting Professor Ming Dao said that previous attempts at using machine learning to analyse material properties mostly involved the use of “synthetic” data generated by the computer under unrealistically perfect conditions – for instance where the shape of the indenter tip is perfectly sharp, and the motion of the indenter is perfectly smooth. The measurements predicted by machine learning were inaccurate as a result.

Read More  What's At Stake If AI Is Increasingly Being Used To Identify Our Emotions?

Training the neural network initially with synthetic data, then incorporating a relatively small number of real experimental data points, however, can substantially improve the accuracy of the results, the team found.

They also report that the training with synthetic data can be done ahead of time, with a small number of real experimental results to be added for calibration when it comes to evaluating the properties of actual materials.

Prof Suresh said: “The use of real experimental data points helps to compensate for the ideal world that is assumed in the synthetic data. By using a good mix of data points from the idealised and real-world, the end result is drastically reduced error.”

In addition to Prof Subra Suresh, Prof Ming Dao and Prof Upadrasta Ramamurty, the list of authors include research fellow Dr Punit Kumar from NTU, and Prof George Em Karniadakis and graduate student, Lu Lu, from Brown University.

admin

Related Topics
  • Brown University
  • Materials
  • MIT
  • Nanyang Technological University
You May Also Like
View Post
  • Engineering
  • Machine Learning

Peacock: Tackling ML Challenges By Accelerating Skills

  • March 23, 2023
View Post
  • Data
  • Machine Learning
  • Platforms

Coop Reduces Food Waste By Forecasting With Google’s AI And Data Cloud

  • March 23, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Robotics

Gods In The Machine? The Rise Of Artificial Intelligence May Result In New Religions

  • March 23, 2023
View Post
  • Artificial Intelligence
  • Machine Learning

6 ways Google AI Is Helping You Sleep Better

  • March 21, 2023
View Post
  • Artificial Intelligence
  • Machine Learning

AI Could Make More Work For Us, Instead Of Simplifying Our Lives

  • March 21, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Platforms
  • Technology

Using ML To Predict The Weather And Climate Risk

  • March 16, 2023
View Post
  • Artificial Intelligence
  • Data
  • Machine Learning
  • Technology

ChatGPT: How To Prevent It Becoming A Nightmare For Professional Writers

  • March 16, 2023
View Post
  • Data
  • Engineering
  • Machine Learning

Sentiment Analysis With BigQuery ML

  • March 13, 2023

Leave a Reply

Your email address will not be published. Required fields are marked *

Stay Connected!
LATEST
  • 1
    Ditching Google: The 3 Search Engines That Use AI To Give Results That Are Meaningful
    • March 23, 2023
  • 2
    Peacock: Tackling ML Challenges By Accelerating Skills
    • March 23, 2023
  • 3
    Coop Reduces Food Waste By Forecasting With Google’s AI And Data Cloud
    • March 23, 2023
  • 4
    Gods In The Machine? The Rise Of Artificial Intelligence May Result In New Religions
    • March 23, 2023
  • 5
    The Technology Behind A Perfect Cup Of Coffee
    • March 22, 2023
  • 6
    BigQuery Under The Hood: Behind The Serverless Storage And Query Optimizations That Supercharge Performance
    • March 22, 2023
  • 7
    6 ways Google AI Is Helping You Sleep Better
    • March 21, 2023
  • 8
    AI Could Make More Work For Us, Instead Of Simplifying Our Lives
    • March 21, 2023
  • 9
    Microsoft To Showcase Purpose-Built AI Infrastructure At NVIDIA GTC
    • March 21, 2023
  • 10
    The Next Generation Of AI For Developers And Google Workspace
    • March 21, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    ABB To Expand Robotics Factory In US
    • March 16, 2023
  • 2
    Introducing Microsoft 365 Copilot: Your Copilot For Work
    • March 16, 2023
  • 3
    Linux Foundation Training & Certification & Cloud Native Computing Foundation Partner With Corise To Prepare 50,000 Professionals For The Certified Kubernetes Administrator Exam
    • March 16, 2023
  • 4
    Intel Contributes AI Acceleration to PyTorch 2.0
    • March 15, 2023
  • 5
    Sumitovant More Than Doubles Its Research Output In Its Quest To Save Lives
    • March 21, 2023
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
  • About

Input your search keywords and press Enter.