Liwaiwai Liwaiwai



Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • Artificial Intelligence

2021 Habitat Challenge Launches To Advance Embodied AI Research

  • February 22, 2021
  • relay

Facebook AI is excited to launch the third Habitat Challenge, an open research initiative that invites AI experts around the world to teach machines to navigate real-world environments. The Habitat Challenge 2021, implemented in collaboration with Georgia Tech, asks participants to train embodied agents to perform PointGoal navigation (“Go 5 meters north, 3 meters west”) and ObjectGoal navigation (“Go find a chair”) using Habitat-Sim, Facebook AI’s flexible, high-performance open source 3D simulator.

Habitat Challenge launches at the 2021 Embodied AI Workshop at the Conference on Computer Vision and Pattern Recognition (CVPR), in coordination with eight other embodied AI challenges supported by 15 academic and research organizations. Three of these research competitions will also be based in Habitat-Sim, supported by Facebook AI researchers and our close collaborators. The SoundSpaces Challenge, supported by Facebook AI research scientist Kristen Grauman, Changan Chen (University of Texas at Austin), and Unnat Jain (University of Illinois at Urbana-Champaign), builds on their recent paper and calls for participants to train virtual robots to navigate to audio sources with auditory and visual perception in multi-room 3D environments. Similarly, the MultiON (Multi-Object Navigation) Challenge, hosted by the Indian Institute of Technology Kanpur, the University of Illinois, and Simon Fraser University asks participants to train agents to efficiently navigate to a sequence of objects in a home environment. The Room-Across-Room Habitat Challenge (RxR-Habitat), hosted by Oregon State University, Google, and Facebook AI, builds on object navigation tasks by asking agents to follow human-generated instructions (“Turn left at the corner and go to the kitchen”).

The PointGoal navigation task tests the AI agent’s ability to efficiently reach a destination in a realistic simulated space.

The joint launch of these challenges this year offers the embodied AI research community an unprecedented opportunity to move toward a common framework for the field, converging around a unified set of tasks, simulation platforms, and 3D assets. The organizers will collectively share results across all these challenges at CVPR in June, providing a unique viewpoint on the state of embodied AI research and new directions for the subfield.

One of the central AI research challenges today is teaching machines to move through and operate intelligently in complex situations in the physical world. The potential benefits of this work range beyond conveniences, such as asking a robot to get a set of keys from the kitchen or a laptop from a desk upstairs. Embodied AI can also, for example, help the visually impaired navigate unfamiliar environments or perform difficult tasks in dangerous or difficult situations. AI Habitat is a central component in achieving these goals, with a fast, photo-realistic simulator for embodied research, with an open, modular design that’s both powerful and flexible enough to bring reproducibility and standardized benchmarks to this subfield.

This year, the Habitat Challenge PointGoal navigation task places an agent at a random starting position and orientation in an unseen environment and asks it to navigate to target coordinates. No ground-truth map is available, and the agent must navigate using only sensory input from an RGB-D camera. In ObjectGoal navigation, an agent must start from a random position and orientation in an unseen environment and then find a particular type of object category, such as a table or chair. As with the other challenge, the agent has no map and must use only its sensory input to navigate.

The ObjectGoal navigation task relies on the agent’s ability to move through a simulated space, its semantic understanding, and its commonsense knowledge about physical spaces (for example, that fireplaces are typically located in a den or living room).

Please review the submission guidelines before entering and note that participants must submit their submissions to EvalAI. The winning team from each track will be invited to nominate a team member to share their work at a CVPR 2021 virtual event, where we will also share the challenge leaderboards.

Partners and embodied AI challenges at CVPR 2021:

  • The iGibson Challenge, hosted by Stanford Vision and Learning Lab and Robotics at Google

  • Habitat Challenge 2021, hosted by Facebook AI Research (FAIR) and Georgia Tech

  • Navigation and Rearrangement in AI2-THOR, hosted by the Allen Institute for AI

  • ALFRED: Interpreting Grounded Instructions for Everyday Tasks, hosted by the University of Washington, Carnegie Mellon University, the Allen Institute for AI, and the University of Southern California

  • Room-Across-Room Habitat Challenge (RxR-Habitat), hosted by Oregon State University, Google, and Facebook AI

  • SoundSpaces Challenge, hosted by the University of Texas at Austin and the University of Illinois at Urbana-Champaign

  • TDW-Transport, hosted by the Massachusetts Institute of Technology

  • Robotic Vision Scene Understanding, hosted by the Australian Centre for Robotic Vision in association with the Queensland University of Technology Centre for Robotics

  • MultiON: Multi-Object Navigation, hosted by the Indian Institute of Technology Kanpur, the University of Illinois at Urbana-Champaign, and Simon Fraser University

By Dhruv Batra Research Scientist
Source: Facebook AI

relay

Related Topics
  • 2021 Embodied AI Workshop
  • AI Habitat
  • CVPR 2021
  • Facebook AI
  • Habitat-Sim
  • ObjectGoal
  • SoundSpaces Challenge
You May Also Like
View Post
  • Artificial Intelligence

Microsoft‘s Big AI Ambitions Go Beyond Just OpenAI And ChatGPT

  • February 3, 2023
View Post
  • Artificial Intelligence
  • Technology

Deepfakes: Faces Created By AI Now Look More Real Than Genuine photos

  • February 3, 2023
View Post
  • Artificial Intelligence

GPT-3 In Your Pocket? Why Not!

  • February 3, 2023
View Post
  • Artificial Intelligence
  • Design
  • Engineering

Can AI Replace Cloud Architects?

  • February 2, 2023
View Post
  • Artificial Intelligence

Meet Aiko And Aiden: The World’s First AI Interns

  • February 2, 2023
View Post
  • Artificial Intelligence
  • Technology

Google Scrambles To Catch Up In The Wake Of OpenAI’s ChatGPT

  • January 31, 2023
View Post
  • Artificial Intelligence
  • Technology

9 Ways We Use AI In Our Products

  • January 31, 2023
View Post
  • Artificial Intelligence
  • Technology

7 Ways Google Is Using AI To Help Solve Society’s Challenges

  • January 30, 2023

Leave a Reply

Your email address will not be published. Required fields are marked *

Stay Connected!
LATEST
  • 1
    Microsoft‘s Big AI Ambitions Go Beyond Just OpenAI And ChatGPT
    • February 3, 2023
  • 2
    Deepfakes: Faces Created By AI Now Look More Real Than Genuine photos
    • February 3, 2023
  • 3
    GPT-3 In Your Pocket? Why Not!
    • February 3, 2023
  • 4
    Can AI Replace Cloud Architects?
    • February 2, 2023
  • 5
    Meet Aiko And Aiden: The World’s First AI Interns
    • February 2, 2023
  • 6
    Google Scrambles To Catch Up In The Wake Of OpenAI’s ChatGPT
    • January 31, 2023
  • 7
    9 Ways We Use AI In Our Products
    • January 31, 2023
  • 8
    Google Cloud Unveils New AI Tools for Retailers
    • January 31, 2023
  • 9
    7 Ways Google Is Using AI To Help Solve Society’s Challenges
    • January 30, 2023
  • 10
    The Ethics Of Machine Learning: Understanding The Role Of Developers And Designers
    • January 30, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    8 Best Human Behaviour Datasets For Machine Learning
    • January 30, 2023
  • 2
    Built With BigQuery: How To Accelerate Data-Centric AI Development With Google Cloud And Snorkel AI
    • January 29, 2023
  • 3
    What Kind Of Future Will AI Bring Enterprise IT?
    • January 29, 2023
  • 4
    Prompt Engineering For ChatGPT And Generative AI
    • January 29, 2023
  • 5
    AI Might Be Seemingly Everywhere, But There Are Still Plenty Of Things It Can’t Do—for now
    • January 27, 2023
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
  • About

Input your search keywords and press Enter.