Preserving Privacy Of Machine Learning Models
When you see headlines about artificial intelligence (AI) being used to detect health issues, that’s usually thanks to a hospital providing data to researchers. But such systems aren’t as robust as they could be, because such data is usually only taken from one organization. Hospitals are understandably cautious about sharing data in a way that could get it leaked to competitors. Existing efforts to handle this issue include “federated learning” (FL) a technique that enables distributed clients to collaboratively learn a shared machine learning model while keeping their training data localized. However, even the most cutting-edge FL methods have privacy concerns, since…
Share