Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • Data
  • Machine Learning

Machine Learning Unearths Signature Of Slow-slip Quake Origins In Seismic Data

  • August 19, 2020
  • relay
Cascadia region in the Pacific Northwest Using a machine learning model and historical data from the Cascadia region in the Pacific Northwest, computational geophysicists at Los Alamos National Laboratory have unearthed distinct statistical features marking the formative stage of slow-slip ruptures in the earth’s crust months before tremor or GPS data detected a slip in the tectonic plates. (Photo: Galyna Andrushko/Shutterstock.com)

Combing through historical seismic data, researchers using a machine learning model have unearthed distinct statistical features marking the formative stage of slow-slip ruptures in the earth’s crust months before tremor or GPS data detected a slip in the tectonic plates. Given the similarity between slow-slip events and classic earthquakes, these distinct signatures may help geophysicists understand the timing of the devastating faster quakes as well.

“The machine learning model found that, close to the end of the slow slip cycle, a snapshot of the data is imprinted with fundamental information regarding the upcoming failure of the system,” said Claudia Hulbert, a computational geophysicist at ENS and the Los Alamos National Laboratory and lead author of the study, published today in Nature Communications. “Our results suggest that slow-slip rupture may well be predictable, and because slow slip events have a lot in common with earthquakes, slow-slip events may provide an easier way to study the fundamental physics of earth rupture.”

Slow-slip events are earthquakes that gently rattle the ground for days, months, or even years, do not radiate large-amplitude seismic waves, and often go unnoticed by the average person. The classic quakes most people are familiar with rupture the ground in minutes. In a given area they also happen less frequently, making the bigger quakes harder to study with the data-hungry machine learning techniques.

The team looked at continuous seismic waves covering the period 2009 to 2018 from the Pacific Northwest Seismic Network, which tracks earth movements in the Cascadia region. In this subduction zone, during a slow slip event, the North American plate lurches southwesterly over the Juan de Fuca plate approximately every 14 months. The data set lent itself well to the supervised-machine learning approach developed in laboratory earthquake experiments by the Los Alamos team collaborators and used for this study.

Read More  Machine Learning Picks Out Hidden Vibrations From Earthquake Data

The team computed a number of statistical features linked to signal energy in low-amplitude signals, frequency bands their previous work identified as the most informative about the behavior of the geologic system. The most important feature for predicting slow slip in the Cascadia data is seismic power, which corresponds to seismic energy, in particular frequency bands associated to slow slip events. According to the paper, slow slip often begins with an exponential acceleration on the fault, a force so small it eludes detection by seismic sensors.

“For most events, we can see the signatures of impending rupture from weeks to months before the rupture,” Hulbert said. “They are similar enough from one event cycle to the next so that a model trained on past data can recognize the signatures in data from several years later. But it’s still an open question whether this holds over long periods of time.”

The research team’s hypothesis about the signal indicating the formation of a slow-slip event aligns with other recent work by Los Alamos and others detecting small-amplitude foreshocks in California. That work found that foreshocks can be observed in average two weeks before most earthquakes of magnitude greater than 4.

Hulbert and her collaborators’ supervised machine learning algorithms train on the seismic features calculated from the first half of the seismic data and attempts to find the best model that maps these features to the time remaining before the next slow slip event. Then they apply it to the second half of data, which it hasn’t seen.

Read More  AI Reveals First Direct Observation Of Rupture Propagation During Slow Quakes

The algorithms are transparent, meaning the team can see which features the machine learning uses to predict when the fault would slip. It also allows the researchers to compare these features with those that were most important in laboratory experiments to estimate failure times. These algorithms can be probed to identify which statistical features of the data are important in the model predictions, and why.

“By identifying the important statistical features, we can compare the findings to those from laboratory experiments, which gives us a window into the underlying physics,” Hulbert said. “Given the similarities between the statistical features in the data from Cascadia and from laboratory experiments, there appear to be commonalities across the frictional physics underlying slow slip rupture and nucleation. The same causes may scale from the small laboratory system to the vast scale of the Cascadia subduction zone.”

The Los Alamos seismology team, led by Paul Johnson, has published several papers in the past few years pioneering the use of machine learning to unpack the physics underlying earthquakes in laboratory experiments and real-world seismic data.

“An Exponential Build-up in Seismic Energy Suggests a Months-Long Nucleation of Slow Slip in Cascadia,” Hulbert, Claudia L.; Rouet-Leduc, Bertrand Philippe Gerard; Jolivet, Romain; Johnson, Paul Allan. https://doi.org/10.1038/s41467-020-17754-9

Funding: The project was funded by the joint research laboratory effort in the framework of the CEA-ENS Yves Rocard LRC (France), Institutional Support (LDRD) at Los Alamos, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Geo-4D project), and the U.S. Department of Energy Office of Science.

Read More  Google I/O 2019 | Making Art with Artificial Intelligence: Artists in Conversation

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is managed by Triad, a public service oriented, national security science organization equally owned by its three founding members: Battelle Memorial Institute (Battelle), the Texas A&M University System (TAMUS), and the Regents of the University of California (UC) for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

 

relay

Related Topics
  • Earthquake
  • Los Alamos National Laboratory
  • Seismic Data
You May Also Like
View Post
  • Engineering
  • Machine Learning

Peacock: Tackling ML Challenges By Accelerating Skills

  • March 23, 2023
View Post
  • Data
  • Machine Learning
  • Platforms

Coop Reduces Food Waste By Forecasting With Google’s AI And Data Cloud

  • March 23, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Robotics

Gods In The Machine? The Rise Of Artificial Intelligence May Result In New Religions

  • March 23, 2023
View Post
  • Data
  • Engineering

BigQuery Under The Hood: Behind The Serverless Storage And Query Optimizations That Supercharge Performance

  • March 22, 2023
View Post
  • Artificial Intelligence
  • Machine Learning

6 ways Google AI Is Helping You Sleep Better

  • March 21, 2023
View Post
  • Artificial Intelligence
  • Machine Learning

AI Could Make More Work For Us, Instead Of Simplifying Our Lives

  • March 21, 2023
View Post
  • Data
  • Design
  • Engineering
  • Tools

Sumitovant More Than Doubles Its Research Output In Its Quest To Save Lives

  • March 21, 2023
View Post
  • Data
  • Platforms
  • Technology

How Osmo Is Digitizing Smell With Google Cloud AI Technology

  • March 20, 2023

Leave a Reply

Your email address will not be published. Required fields are marked *

Stay Connected!
LATEST
  • 1
    Ditching Google: The 3 Search Engines That Use AI To Give Results That Are Meaningful
    • March 23, 2023
  • 2
    Peacock: Tackling ML Challenges By Accelerating Skills
    • March 23, 2023
  • 3
    Coop Reduces Food Waste By Forecasting With Google’s AI And Data Cloud
    • March 23, 2023
  • 4
    Gods In The Machine? The Rise Of Artificial Intelligence May Result In New Religions
    • March 23, 2023
  • 5
    The Technology Behind A Perfect Cup Of Coffee
    • March 22, 2023
  • 6
    BigQuery Under The Hood: Behind The Serverless Storage And Query Optimizations That Supercharge Performance
    • March 22, 2023
  • 7
    6 ways Google AI Is Helping You Sleep Better
    • March 21, 2023
  • 8
    AI Could Make More Work For Us, Instead Of Simplifying Our Lives
    • March 21, 2023
  • 9
    Microsoft To Showcase Purpose-Built AI Infrastructure At NVIDIA GTC
    • March 21, 2023
  • 10
    The Next Generation Of AI For Developers And Google Workspace
    • March 21, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    ABB To Expand Robotics Factory In US
    • March 16, 2023
  • 2
    Introducing Microsoft 365 Copilot: Your Copilot For Work
    • March 16, 2023
  • 3
    Linux Foundation Training & Certification & Cloud Native Computing Foundation Partner With Corise To Prepare 50,000 Professionals For The Certified Kubernetes Administrator Exam
    • March 16, 2023
  • 4
    Intel Contributes AI Acceleration to PyTorch 2.0
    • March 15, 2023
  • 5
    Sumitovant More Than Doubles Its Research Output In Its Quest To Save Lives
    • March 21, 2023
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
  • About

Input your search keywords and press Enter.