Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • Artificial Intelligence

Foiling Illicit Cryptocurrency Mining With Artificial Intelligence

  • August 24, 2020
  • relay

Los Alamos National Laboratory computer scientists have developed a new artificial intelligence (AI) system that may be able to identify malicious codes that hijack supercomputers to mine for cryptocurrency such as Bitcoin and Monero.

“Based on recent computer break-ins in Europe and elsewhere, this type of software watchdog will soon be crucial to prevent cryptocurrency miners from hacking into high-performance computing facilities and stealing precious computing resources,” said Gopinath Chennupati, a researcher at Los Alamos National Laboratory and co-author of a new paper in the journal IEEE Access. “Our deep learning artificial intelligence model is designed to detect the abusive use of supercomputers specifically for the purpose of cryptocurrency mining.”

Cryptocurrencies, such as Bitcoin, are forms of digital money. Instead of minting it like coins or paper bills, cryptocurrency miners digitally dig for the currency by performing computationally intense calculations.

Legitimate cryptocurrency miners often assemble enormous computer arrays dedicated to digging up the digital cash. Less savory miners have found they can strike it rich by hijacking supercomputers, provided they can keep their efforts hidden. The new AI system is designed to catch them in the act by comparing programs based on graphs, which are like fingerprints for software.

All programs can be represented by graphs that consist of nodes linked by lines, loops, or jumps. Much as human criminals can be caught by comparing the whorls and arcs on their fingertips to records in a fingerprint database, the new AI system compares the contours in a program’s flow-control graph to a catalog of graphs for programs that are allowed to run on a given computer.

Read More  8 Counterintuitive Tips For Crushing Your AI For Digital Marketing Goals

Instead of finding a match to a known criminal program, however, the system checks to determine whether a graph is among those that identify programs that are supposed to be running on the system.

The researchers tested their system by comparing a known, benign code to an abusive, Bitcoin mining code. They found that their system identified the illicit mining operation much quicker and more reliably than conventional, non-AI analyses.

Because the approach relies on graph comparisons, it cannot be fooled by common techniques that illicit cryptocurrency miners use to disguise their codes, such as including obfuscating variables and comments intended to make the codes look like legitimate programming.

While this graph-based approach may not offer a completely foolproof solution for all scenarios, it significantly expands the set of effective approaches for cyber detectives to use in their ongoing efforts to stifle cyber criminals.

Based on recent computer break-ins, such software watchdogs will soon be crucial to prevent cryptocurrency miners from hacking into high-performance computing facilities and stealing precious computing resources

The research appeared July 27, 2020 in the journal IEEE Access.

Publication: Code Characterization with Graph Convolutions and Capsule Networks, Poornima Haridas, Gopinath Chennupati, Nandakishore Santhi, Phillip Romero, Stephan Eidenbenz, IEEE Access, DOI: 10.1109/ACCESS.2020.3011909

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is managed by Triad, a public service oriented, national security science organization equally owned by its three founding members: Battelle Memorial Institute (Battelle), the Texas A&M University System (TAMUS), and the Regents of the University of California (UC) for the Department of Energy’s National Nuclear Security Administration.

Read More  Simplifying 3D Understanding Using Self-Supervised Learning And Transformers

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

relay

Related Topics
  • Bitcoin
  • Cryptocurrency
  • Los Alamos National Laboratory
  • Mining
  • Monero
You May Also Like
View Post
  • Artificial Intelligence
  • Technology

Limits To Computing: A Computer Scientist Explains Why Even In The Age Of AI, Some Problems Are Just Too Difficult

  • March 17, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Platforms
  • Technology

Using ML To Predict The Weather And Climate Risk

  • March 16, 2023
View Post
  • Artificial Intelligence
  • Platforms
  • Technology

Google Is A Leader In The 2023 Gartner® Magic Quadrant™ For Enterprise Conversational AI Platforms

  • March 16, 2023
View Post
  • Artificial Intelligence
  • Technology

The Future Of AI Is Promising Yet Turbulent

  • March 16, 2023
View Post
  • Artificial Intelligence
  • Data
  • Machine Learning
  • Technology

ChatGPT: How To Prevent It Becoming A Nightmare For Professional Writers

  • March 16, 2023
View Post
  • Artificial Intelligence

AI Tokens Are Gaining Momentum In 2023

  • March 14, 2023
View Post
  • Artificial Intelligence
  • Technology

How Bootstrapped Saas Businesses Can Use ChatGPT For Marketing

  • March 14, 2023
View Post
  • Artificial Intelligence
  • Automation

Can Businesses Help Build Trustworthy And Accurate Generative AI?

  • March 14, 2023

Leave a Reply

Your email address will not be published. Required fields are marked *

Stay Connected!
LATEST
  • 1
    How Osmo Is Digitizing Smell With Google Cloud AI Technology
    • March 20, 2023
  • 2
    Built With BigQuery: How Sift Delivers Fraud Detection Workflow Backtesting At Scale
    • March 20, 2023
  • 3
    Building The Most Open And Innovative AI Ecosystem
    • March 20, 2023
  • 4
    Understand And Trust Data With Dataplex Data Lineage
    • March 17, 2023
  • 5
    Limits To Computing: A Computer Scientist Explains Why Even In The Age Of AI, Some Problems Are Just Too Difficult
    • March 17, 2023
  • 6
    The Benefits And Core Processes Of Data Wrangling
    • March 17, 2023
  • 7
    We Cannot Even Agree On Dates…
    • March 17, 2023
  • 8
    Financial Crisis: It’s A Game & We’re All Being Played
    • March 17, 2023
  • 9
    Using ML To Predict The Weather And Climate Risk
    • March 16, 2023
  • 10
    Google Is A Leader In The 2023 Gartner® Magic Quadrant™ For Enterprise Conversational AI Platforms
    • March 16, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    The Future Of AI Is Promising Yet Turbulent
    • March 16, 2023
  • 2
    ChatGPT: How To Prevent It Becoming A Nightmare For Professional Writers
    • March 16, 2023
  • 3
    Midjourney Selects Google Cloud To Power AI-Generated Creative Platform
    • March 8, 2023
  • 4
    A Guide To Managing Your Agile Engineering Team
    • March 15, 2023
  • 5
    10 Ways Wikimedia Does Developer Advocacy
    • March 15, 2023
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
  • About

Input your search keywords and press Enter.