Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • Artificial Intelligence
  • Machine Learning
  • Technology

Machine Learning Makes Building Rocket Engines Easier

  • September 7, 2020
  • admin

Methods from scientific machine learning could address the challenges of testing the stability of rocket engines, researchers report.

Time, cost, and safety prohibit testing the stability of a test rocket using a physical build “trial and error” approach. But even computational simulations are extremely time consuming.

A single analysis of an entire SpaceX Merlin rocket engine, for example, could take weeks, even months, for a supercomputer to provide satisfactory predictions.


Partner with liwaiwai.com
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

Scientific machine learning is a relatively new field that blends scientific computing with machine learning. Through a combination of physics modeling and data-driven learning, it becomes possible to create reduced-order models—simulations that can run in a fraction of the time, making them particularly useful in the design setting.

The goal of the work, led by Karen Willcox at the Oden Institute for Computational Engineering and Sciences at The University of Texas at Austin, is to provide rocket engine designers with a fast way to assess rocket engine performance in a variety of operating conditions.

“Rocket engineers tend to explore different designs on a computer before building and testing,” Willcox says. “Physical build and test is not only time-consuming and expensive, it can also be dangerous.”

But the stability of a rocket’s engine, which must withstand a variety of unforeseen variables during any flight, is a critical design target engineers must be confident they have met before any rocket can get off the ground.

The cost and time it takes to characterize the stability of a rocket engine comes down to the sheer complexity of the problem. A multitude of variables affect engine stability, not to mention the speed at which things can change during a rocket’s journey.

“The reduced-order models being developed by the Willcox group at UT Austin’s Oden Institute will play an essential role in putting rapid design capabilities into the hands of our rocket engine designers,” says Ramakanth Munipalli, senior aerospace research engineer in the Combustion Devices Branch at Air Force Rocket Research Lab.

“In some important cases, these reduced-order models are the only means by which one can simulate a large propulsion system. This is highly desirable in today’s environment where designers are heavily constrained by cost and schedule.”

Read More  Peacock: Tackling ML Challenges By Accelerating Skills

The new methods have been applied to a combustion code used by the Air Force known as General Equation and Mesh Solver (GEMS). Willcox’s group received “snapshots” generated by running the GEMS code for a particular scenario that modeled a single injector of a rocket engine combustor.

These snapshots represent the instantaneous fields of pressure, velocity, temperature, and chemical content in the combustor, and they serve as the training data from which Willcox and her group derive the reduced-order models.

Generating that training data in GEMS takes about 200 hours of computer processing time. Once trained, the reduced-order models can run the same simulation in seconds.

“The reduced-order models can now be run in place of GEMS to issue rapid predictions,” Willcox says.

But these models do more than just repeat the training simulation.

They also can simulate into the future, predicting the physical response of the combustor for operating conditions that were not part of the training data.

Although not perfect, the models do an excellent job of predicting overall dynamics. They are particularly effective at capturing the phase and amplitude of the pressure signals, key elements for making accurate engine stability predictions.

“These reduced-order models are surrogates of the expensive high-fidelity model we rely upon now,” Willcox says. “They provide answers good enough to guide engineers’ design decisions, but in a fraction of the time.”

The research appears in AIAA Journal. The Air Force Office of Scientific Research and Air Force Research Laboratory funded the research.


For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

admin

Related Topics
  • Engines
  • Machine Learning
  • Space
  • Spacecraft
You May Also Like
OpenAI
View Post
  • Artificial Intelligence
  • Platforms

How We Interact With Information: The New Era Of Search

  • September 28, 2023
View Post
  • Artificial Intelligence
  • Engineering
  • Machine Learning
  • Platforms

Bring AI To Looker With The Machine Learning Accelerator

  • September 28, 2023
View Post
  • Engineering
  • Technology

3 Questions: A New PhD Program From The Center For Computational Science And Engineering

  • September 28, 2023
View Post
  • Artificial Intelligence
  • Technology

Microsoft And Mercy Collaborate To Empower Clinicians To Transform Patient Care With Generative AI

  • September 27, 2023
View Post
  • Artificial Intelligence
  • Machine Learning

Canonical releases Charmed MLFlow

  • September 26, 2023
View Post
  • Artificial Intelligence
  • Technology

NASA’s Mars Rovers Could Inspire A More Ethical Future For AI

  • September 26, 2023
View Post
  • Artificial Intelligence
  • Platforms

Oracle CloudWorld 2023: 6 Key Takeaways From The Big Annual Event

  • September 25, 2023
View Post
  • Artificial Intelligence

3 Ways AI Can Help Communities Adapt To Climate Change In Africa

  • September 25, 2023
A Field Guide To A.I.
Navigate the complexities of Artificial Intelligence and unlock new perspectives in this must-have guide.
Now available in print and ebook.

charity-water



Stay Connected!
LATEST
  • OpenAI 1
    How We Interact With Information: The New Era Of Search
    • September 28, 2023
  • 2
    Bring AI To Looker With The Machine Learning Accelerator
    • September 28, 2023
  • 3
    3 Questions: A New PhD Program From The Center For Computational Science And Engineering
    • September 28, 2023
  • 4
    Microsoft And Mercy Collaborate To Empower Clinicians To Transform Patient Care With Generative AI
    • September 27, 2023
  • 5
    Canonical releases Charmed MLFlow
    • September 26, 2023
  • 6
    NASA’s Mars Rovers Could Inspire A More Ethical Future For AI
    • September 26, 2023
  • 7
    Oracle CloudWorld 2023: 6 Key Takeaways From The Big Annual Event
    • September 25, 2023
  • 8
    3 Ways AI Can Help Communities Adapt To Climate Change In Africa
    • September 25, 2023
  • Robotic Hand | Lights 9
    Nvidia H100 Tensor Core GPUs Come To Oracle Cloud
    • September 24, 2023
  • 10
    AI-Driven Tool Makes It Easy To Personalize 3D-Printable Models
    • September 22, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    Huawei: Advancing a Flourishing AI Ecosystem Together
    • September 22, 2023
  • Coffee | Laptop | Notebook | Work 2
    First HP Work Relationship Index Shows Majority of People Worldwide Have an Unhealthy Relationship with Work
    • September 20, 2023
  • 3
    Huawei Connect 2023: Accelerating Intelligence For Shared Success
    • September 20, 2023
  • 4
    Applying Generative AI To Product Design With BigQuery DataFrames
    • September 21, 2023
  • 5
    Combining AI With A Trusted Data Approach On IBM Power To Fuel Business Outcomes
    • September 21, 2023
  • /
  • Artificial Intelligence
  • Explore
  • About
  • Contact Us

Input your search keywords and press Enter.