Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • Artificial Intelligence
  • Environment
  • Machine Learning
  • People

Machine Learning Could Improve Hurricane Prediction

  • September 8, 2020
  • admin

Applying a machine learning technique to a group of possible storm paths could help meteorologists provide more accurate medium-term hurricane forecasts.

This approach could also help them issue timely warnings to communities in the path of these potentially deadly storms, report researchers.

In a new study, the researchers used machine learning to remove certain groups of hurricane predictions from ensembles—sets of predictions from weather models that are based on a range of weather possibilities—to lower errors and improve forecasts four to six days ahead.

“…WHEN YOU ARE FACING A HURRICANE, IT’S IMPORTANT TO KNOW WHAT TYPE OF STORM YOU’RE GOING TO GET—AND WHEN YOU’RE GOING TO GET IT.”

Scientists use these ensemble models because weather is highly complex and trying to forecast even a single event creates huge amounts of data, says Jenni Evans, professor of meteorology and atmospheric science and director of the Institute for Computational and Data Sciences at Penn State.

“The models are run slightly differently many, many times to create an ensemble of possible future states of the atmosphere. It’s this ensemble that is given to the forecasters,” says Evans.

“We’re looking at 120 different forecasts at every time around the globe, then focusing on an individual typhoon or hurricane and asking, ‘What will this storm do in the future?’ Now, if you give those predictions to a forecaster only a few hours before their forecast goes live, that’s a huge amount of information to process,” she says. “So, instead, we’ve used advanced statistics and machine learning to try to break down those 120 forecasts into between four and six clusters where each cluster represents a distinct prediction of the evolution of the storm from all of the other clusters.”

Read More  Pope Francis Urges Followers To Pray That AI And Robots ‘Always Serve Mankind’

Weather watchers may better recognize these ensembles as the collection of squiggly lines that show possible storm paths during hurricane season.

Although these models are good and getting better, they are far from perfect, Evans says. Each prediction may account for a slight variation in the many variables that make up weather, such as energy from the ocean and clouds, she adds. Also, they are mainly focusing on the sort of hurricanes—like Hurricane Sandy in 2012 and Hurricane Isaias in 2020—that move up the coast and out of the tropics.

“These storms are generally more difficult to predict because their environment changes so much through their lifetime,” Evans says. “If you look at the current models, they’re imperfect because you can’t see every molecule of water that you would need and every piece of energy from the sun, and we also know that how we represent some of that information is imperfect. But, when you are facing a hurricane, it’s important to know what type of storm you’re going to get—and when you’re going to get it.”

Like an arborist who cuts away weak and damaged limbs so the rest of the tree can flourish, the researchers divided the ensemble into groups of forecasts, known as clusters, and “pruned” those that were expected to perform poorly, according to Alex Kowaleski, a postdoctoral scholar in meteorology and atmospheric science. The researchers found that very small clusters tended to perform much worse than other ones.

CLUSTERING MAY HELP FORECASTERS GET MORE PRECISE WARNINGS TO PEOPLE WHO MAY BE UNAWARE OF THE CHANGING WEATHER SITUATION.

“There’s a strong relationship between cluster size and cluster error and it’s most prominent for the smallest clusters,” says Kowaleski. “The smallest clusters tend to perform much more poorly. That’s not due simply to it being a smaller ensemble size because, all things considered, if you just increase the ensemble size just by adding more members, you’ll get better performance up to a certain level. But these small clusters were so poor that they were doing worse than a randomly selected ensemble member.”

Read More  In A Battle Of AI Versus AI, Researchers Are Preparing For The Coming Wave Of Deepfake Propaganda

Among other results, the researchers were able to reduce errors that could affect forecasts by removing these small clusters.

According to Kowaleski, while most people know that hurricanes are dangerous, they often do not consider that the storms’ hazards vary widely from place to place due to factors such as tides and local topography. However, clustering may help forecasters better predict the variety of scenarios in different locations along the storm’s path and get more precise warnings to people who may be unaware of the changing weather situation.

“A hurricane presents a massive area of hazards,” says Kowaleski. “If you’re a stakeholder or a person living on the coast, it doesn’t matter where the geographical center of the storm is and what the maximum wind speed is. What you ultimately care about is what are the severe conditions that you and your community is going to experience.”

The study includes over 120 forecast events taken from the North Atlantic, eastern North Pacific, central Pacific forecasts, western North Pacific storms, South Pacific, and south Indian Oceans. The researchers obtained track forecasts for tropical cyclones that occurred during 2017 to 2018 from the THORPEX Interactive Grand Global Ensemble, or TIGGE. The European Centre for Medium-Range Weather Forecasts, the National Centers for Environmental Prediction’s (NCEP) Global Ensemble Forecast System, the UK Met Office Global Ensemble Prediction System, and the Environment Canada Global Ensemble Prediction System provided the TIGGE data employed in this study.

 

By Matt Swayne

The research appears in Weather and Forecasting.

Source: Penn State

admin

Related Topics
  • Artificial Intelligence
  • Environment
  • Hurricane
  • Machine Learning
  • Predictions
  • Storm
  • Weather
You May Also Like
View Post
  • Artificial Intelligence
  • Technology

Limits To Computing: A Computer Scientist Explains Why Even In The Age Of AI, Some Problems Are Just Too Difficult

  • March 17, 2023
View Post
  • People

Financial Crisis: It’s A Game & We’re All Being Played

  • March 17, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Platforms
  • Technology

Using ML To Predict The Weather And Climate Risk

  • March 16, 2023
View Post
  • Artificial Intelligence
  • Platforms
  • Technology

Google Is A Leader In The 2023 Gartner® Magic Quadrant™ For Enterprise Conversational AI Platforms

  • March 16, 2023
View Post
  • Artificial Intelligence
  • Technology

The Future Of AI Is Promising Yet Turbulent

  • March 16, 2023
View Post
  • Artificial Intelligence
  • Data
  • Machine Learning
  • Technology

ChatGPT: How To Prevent It Becoming A Nightmare For Professional Writers

  • March 16, 2023
View Post
  • Engineering
  • People
  • Software Engineering

A Guide To Managing Your Agile Engineering Team

  • March 15, 2023
View Post
  • Engineering
  • People

10 Ways Wikimedia Does Developer Advocacy

  • March 15, 2023

Leave a Reply

Your email address will not be published. Required fields are marked *

Stay Connected!
LATEST
  • 1
    How Osmo Is Digitizing Smell With Google Cloud AI Technology
    • March 20, 2023
  • 2
    Built With BigQuery: How Sift Delivers Fraud Detection Workflow Backtesting At Scale
    • March 20, 2023
  • 3
    Building The Most Open And Innovative AI Ecosystem
    • March 20, 2023
  • 4
    Understand And Trust Data With Dataplex Data Lineage
    • March 17, 2023
  • 5
    Limits To Computing: A Computer Scientist Explains Why Even In The Age Of AI, Some Problems Are Just Too Difficult
    • March 17, 2023
  • 6
    The Benefits And Core Processes Of Data Wrangling
    • March 17, 2023
  • 7
    We Cannot Even Agree On Dates…
    • March 17, 2023
  • 8
    Financial Crisis: It’s A Game & We’re All Being Played
    • March 17, 2023
  • 9
    Using ML To Predict The Weather And Climate Risk
    • March 16, 2023
  • 10
    Google Is A Leader In The 2023 Gartner® Magic Quadrant™ For Enterprise Conversational AI Platforms
    • March 16, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    The Future Of AI Is Promising Yet Turbulent
    • March 16, 2023
  • 2
    ChatGPT: How To Prevent It Becoming A Nightmare For Professional Writers
    • March 16, 2023
  • 3
    Midjourney Selects Google Cloud To Power AI-Generated Creative Platform
    • March 8, 2023
  • 4
    A Guide To Managing Your Agile Engineering Team
    • March 15, 2023
  • 5
    10 Ways Wikimedia Does Developer Advocacy
    • March 15, 2023
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
  • About

Input your search keywords and press Enter.