Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • Artificial Intelligence
  • Data
  • Machine Learning

How AI Uncovers Important Contract Data

  • October 22, 2020
  • relay

What happens to business contracts in an organization after signature? Usually, the answer is nothing. They sit in Gmail, Drive, or in a dedicated contract repository until, in rare cases, someone needs to recheck the agreement terms. At which point a scramble ensues to find the contract, read through it, and discover what exactly was agreed to.

Contracts contain valuable data about your business: whom you’ve engaged with, what you’ve promised, how much you’re owed, when the deal expires, where terms apply, and that’s just the tip of the iceberg. These documents are legally validated by all the parties involved, which means that the data they contain is intrinsically accurate.

So why, in an age when data flows freely from every imaginable source, is it still so hard to see what’s in your contracts? At Ironclad, that’s one of the major problems we’re attempting to solve. And thanks in large part to Google Cloud AI, we’re excited to share the news of our advancements.

But first, a few things about contracts.

 

Why contracts are hard

Business contracts have all but resisted the wave of digital transformation. Yes, we now draft in Microsoft Word, share via email, and use eSignature instead of “wet” signatures, but the structure, language, and formatting of contracts are the same as they were in the 1920s, and the valuable information represented in contracts remains decidedly analog.

We believe that the world is sure to adopt a form of natively-digital contracting. (We’re working on it!) But it’s going to take a while, and, in the meantime, we need to find a way to unlock the data stored in Word docs and PDFs.

Read More  Google Cloud Next 2019 | The Future of Health

That’s not an easy thing to do. Here’s why:

Problem #1: Contracts are unstructured, unstandardized, and use nuanced legal language.

Problem #2. Contracts exist to guard against rare and potentially catastrophic occurrences, so tolerance for false negatives and false positives is pretty close to zero.

Natural Language Processing (NLP) is a great tool for Problem #1. In 2017 we started experimenting with it. Unfortunately, the feature development was too slow. A single experiment could take weeks, and to build a pipeline of promising experiments took months. It would have taken ages just to get half-decent accuracies, let alone figure out how to address Problem #2.

So, we put NLP on the back-burner and waited for the technology to catch up.

 

The technology did catch up – and just in time, too.

Almost as soon as the pandemic began, our customers started asking for more information about their contracts. They needed to know everything from opt-out clauses and force majeure to employment terms and accounts receivables, and they wanted to know faster (and more cheaply) than a team of humans could reasonably extract it.

All of a sudden, we needed a new approach to AI. And as fate would have it, we discovered Google Cloud AutoML Natural Language.

We started with AutoML’s Entity Extraction model. First, we uploaded a small, curated set of contracts and labeled three properties: entity name, signature date, and signer name. After a few hours of training, signature date had precision and recall rates surpassing 90%. This was the best result we’d ever achieved over three years of on-and-off experiments — and, incredibly, Google needed a relatively tiny data set to achieve it.

Read More  IBM Launches New Software To Break Down Data Silos And Streamline Planning And Analytics

But we weren’t fully convinced. The data set was small and the model failed on both entity name and signer name. So as a next step we changed up our labeling and expanded the data set. A few more hours of training, and accuracy rates on entity name and signer name rose to 70% and 90%, respectively.

An early experiment.jpg
An early experiment with promising results.

 

That was all we needed to see. We’d found the answer to our NLP problem, and it took just two tests to get there. Plus, it came with a bonus: the model was immediately live on Google Cloud AI Platform for predictions, so we could start testing the user experience that very day.

Within a week, we had our first feature prototype.

Before_after AutoML + AI Platform Prediction.jpg
Before/after AutoML + AI Platform Prediction.

 

Ironclad Smart Import: Unlocking contract data with Google Cloud AI

Now, a few months later, we’re in alpha with a handful of customers. The feature is Smart Import, a fast and accurate way to extract data from contracts generated outside of Ironclad. (Contracts generated within Ironclad are already digital and don’t require data extraction.) The feature works on an increasing number of key data properties with some accuracy rates exceeding 90%.

Yet even 90%+ isn’t good enough in the world of contracting. (See Problem #2.) That’s why the feature also enables users to deliver the last mile of data accuracy themselves, aided by an intuitive data validation flow with human reviewers. Ironclad’s design and product teams had plenty of flexibility to implement this validation flow thanks to AI Platform and our massively simplified NLP pipeline. And their work has paid off: a few customers have already used Smart Import to analyze thousands of contracts.

Read More  Say Goodbye To Hold Music
Problem #2, solved.jpg
Problem #2, solved.

 

At this rate, we expect to launch in Q1 2021 to hundreds of excited customers. (We hope you’ll join us at the event!) But we see this as just the beginning — already we’re exploring new ways to apply Google Cloud AI to make contracting faster and smarter for our customers.

 

By Cai GoGwilt, Co-founder and CTO of Ironclad

Source https://cloud.google.com/blog/products/ai-machine-learning/how-ai-uncovers-important-contract-data

relay

Related Topics
  • AutoML
  • Cloud AI
  • Google Cloud
  • Google Cloud AI Platform
  • Ironclad Smart Import
You May Also Like
View Post
  • Artificial Intelligence
  • Software
  • Technology

Bard And ChatGPT — A Head To Head Comparison

  • March 31, 2023
View Post
  • Artificial Intelligence
  • Platforms

Modernize Your Apps And Accelerate Business Growth With AI

  • March 31, 2023
View Post
  • Big Data
  • Data
  • Design

From Raw Data To Actionable Insights: The Power Of Data Aggregation

  • March 30, 2023
View Post
  • Data
  • Design
  • Engineering

Effective Strategies To Closing The Data-Value Gap

  • March 30, 2023
View Post
  • Artificial Intelligence
  • Technology

Unlocking The Secrets Of ChatGPT: Tips And Tricks For Optimizing Your AI Prompts

  • March 29, 2023
View Post
  • Artificial Intelligence
  • Technology

Try Bard And Share Your Feedback

  • March 29, 2023
View Post
  • Artificial Intelligence
  • Data
  • Data Science
  • Machine Learning
  • Technology

Google Data Cloud & AI Summit : In Less Than 12 Hours From Now

  • March 29, 2023
View Post
  • Artificial Intelligence
  • Technology

Talking Cars: The Role Of Conversational AI In Shaping The Future Of Automobiles

  • March 28, 2023

Leave a Reply

Your email address will not be published. Required fields are marked *

Stay Connected!
LATEST
  • 1
    Bard And ChatGPT — A Head To Head Comparison
    • March 31, 2023
  • 2
    Modernize Your Apps And Accelerate Business Growth With AI
    • March 31, 2023
  • 3
    Why Your Open Source Project Needs A Content Strategy
    • March 31, 2023
  • 4
    From Raw Data To Actionable Insights: The Power Of Data Aggregation
    • March 30, 2023
  • 5
    Effective Strategies To Closing The Data-Value Gap
    • March 30, 2023
  • 6
    Unlocking The Secrets Of ChatGPT: Tips And Tricks For Optimizing Your AI Prompts
    • March 29, 2023
  • 7
    Try Bard And Share Your Feedback
    • March 29, 2023
  • 8
    Google Data Cloud & AI Summit : In Less Than 12 Hours From Now
    • March 29, 2023
  • 9
    Talking Cars: The Role Of Conversational AI In Shaping The Future Of Automobiles
    • March 28, 2023
  • 10
    Document AI Introduces Powerful New Custom Document Classifier To Automate Document Processing
    • March 28, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    Introducing GPT-4 in Azure OpenAI Service
    • March 21, 2023
  • 2
    How AI Can Improve Digital Security
    • March 27, 2023
  • 3
    ChatGPT 4.0 Finally Gets A Joke
    • March 27, 2023
  • 4
    Mr. Cooper Is Improving The Home-buyer Experience With AI And ML
    • March 24, 2023
  • 5
    My First Pull Request At Age 14
    • March 24, 2023
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
  • About

Input your search keywords and press Enter.