Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • Machine Learning
  • Research

Quantum Machine Learning Hits A Limit

  • May 14, 2021
  • liwaiwai.com
A new theorem from the field of quantum machine learning has poked a major hole in the accepted understanding about information scrambling.

“Our theorem implies that we are not going to be able to use quantum machine learning to learn typical random or chaotic processes, such as black holes. In this sense, it places a fundamental limit on the learnability of unknown processes,” said Zoe Holmes, a post-doc at Los Alamos National Laboratory and coauthor of the paper describing the work published today in Physical Review Letters.

“Thankfully, because most physically interesting processes are sufficiently simple or structured so that they do not resemble a random process, the results don’t condemn quantum machine learning, but rather highlight the importance of understanding its limits,” Holmes said.


Partner with liwaiwai.com
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

In the classic Hayden-Preskill thought experiment, a fictitious Alice tosses information such as a book into a black hole that scrambles the text. Her companion, Bob, can still retrieve it using entanglement, a unique feature of quantum physics. However, the new work proves that fundamental constraints on Bob’s ability to learn the particulars of a given black hole’s physics means that reconstructing the information in the book is going to be very difficult or even impossible.

“Any information run through an information scrambler such as a black hole will reach a point where the machine learning algorithm stalls out on a barren plateau and thus becomes untrainable. That means the algorithm can’t learn scrambling processes,” said Andrew Sornborger a computer scientist at Los Alamos and coauthor of the paper. Sornborger is Director of Quantum Science Center at Los Alamos and leader of the Center’s algorithms and simulation thrust. The Center is a multi-institutional collaboration led by Oak Ridge National Laboratory.

Read More  Moving Toward A Clean-Energy Future By Advancing Fuel Cell Technology

Barren plateaus are regions in the mathematical space of optimization algorithms where the ability to solve the problem becomes exponentially harder as the size of the system being studied increases. This phenomenon, which severely limits the trainability of large scale quantum neural networks, was described in a recent paper by a related Los Alamos team.

“Recent work has identified the potential for quantum machine learning to be a formidable tool in our attempts to understand complex systems,” said Andreas Albrecht, a co-author of the research. Albrecht is Director of the Center for Quantum Mathematics and Physics (QMAP) and Distinguished Professor, Department of Physics and Astronomy, at UC Davis. “Our work points out fundamental considerations that limit the capabilities of this tool.”

In the Hayden-Preskill thought experiment, Alice attempts to destroy a secret, encoded in a quantum state, by throwing it into nature’s fastest scrambler, a black hole. Bob and Alice are the fictitious quantum dynamic duo typically used by physicists to represent agents in a thought experiment.

“You might think that this would make Alice’s secret pretty safe,” Holmes said, “but Hayden and Preskill argued that if Bob knows the unitary dynamics implemented by the black hole, and share a maximally entangled state with the black hole, it is possible to decode Alice’s secret by collecting a few additional photons emitted from the black hole. But this prompts the question, how could Bob learn the dynamics implemented by the black hole? Well, not by using quantum machine learning, according to our findings.”

A key piece of the new theorem developed by Holmes and her coauthors assumes no prior knowledge of the quantum scrambler, a situation unlikely to occur in real-world science.

Read More  Researchers Discover Major Roadblock In Alleviating Network Congestion

“Our work draws attention to the tremendous leverage even small amounts of prior information may play in our ability to extract information from complex systems and potentially reduce the power of our theorem,” Albrecht said. “Our ability to do this can vary greatly among different situations (as we scan from theoretical consideration of black holes to concrete situations controlled by humans here on earth). Future research is likely to turn up interesting examples, both of situations where our theorem remains fully in force, and others where it can be evaded.

Paper: “Barren plateaus preclude learning scramblers.” Zoe Holmes, Andrew Arrasmith, Bin Yan, Patrick J. Coles, Andreas Albrecht, and Andrew T. Sornborger. Physical Review Letters.


For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

liwaiwai.com

Related Topics
  • LANL
  • Los Alamos National Laboratory
  • Quantum Machine Learning
You May Also Like
View Post
  • Artificial Intelligence
  • Engineering
  • Machine Learning
  • Platforms

Bring AI To Looker With The Machine Learning Accelerator

  • September 28, 2023
Microsoft and Adobe
View Post
  • Artificial Intelligence
  • Machine Learning
  • Platforms

Microsoft And Adobe Partner To Deliver Cost Savings And Business Benefits

  • September 21, 2023
Data
View Post
  • Artificial Intelligence
  • Machine Learning
  • Technology

UK Space Sector Has Sights Set On Artificial Intelligence And Machine Learning Professionals

  • September 15, 2023
Data
View Post
  • Artificial Intelligence
  • Engineering
  • Machine Learning
  • Platforms

How Verve Group Transforms Customer Experiences With Google Cloud Vertex AI

  • September 11, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Technology

ListenField Enables Farmers To Harvest The Benefits Of AI And Machine Learning

  • September 7, 2023
View Post
  • Artificial Intelligence
  • Engineering
  • Platforms
  • Research
  • Technology

Fast-Tracking Fusion Energy’s Arrival With AI And Accessibility

  • September 6, 2023
View Post
  • Artificial Intelligence
  • Hybrid Cloud
  • Machine Learning
  • Platforms

Red Hat OpenShift Now Available In AWS Marketplace For The U.S. Intelligence Community

  • September 6, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Software
  • Technology

Series Of Events Will Highlight Generative AI Use Cases Powered By Open Source Software

  • September 6, 2023
A Field Guide To A.I.
Navigate the complexities of Artificial Intelligence and unlock new perspectives in this must-have guide.
Now available in print and ebook.

charity-water



Stay Connected!
LATEST
  • OpenAI 1
    How We Interact With Information: The New Era Of Search
    • September 28, 2023
  • 2
    Bring AI To Looker With The Machine Learning Accelerator
    • September 28, 2023
  • 3
    3 Questions: A New PhD Program From The Center For Computational Science And Engineering
    • September 28, 2023
  • 4
    Microsoft And Mercy Collaborate To Empower Clinicians To Transform Patient Care With Generative AI
    • September 27, 2023
  • 5
    NASA’s Mars Rovers Could Inspire A More Ethical Future For AI
    • September 26, 2023
  • 6
    Oracle CloudWorld 2023: 6 Key Takeaways From The Big Annual Event
    • September 25, 2023
  • 7
    3 Ways AI Can Help Communities Adapt To Climate Change In Africa
    • September 25, 2023
  • Robotic Hand | Lights 8
    Nvidia H100 Tensor Core GPUs Come To Oracle Cloud
    • September 24, 2023
  • 9
    AI-Driven Tool Makes It Easy To Personalize 3D-Printable Models
    • September 22, 2023
  • 10
    Huawei: Advancing a Flourishing AI Ecosystem Together
    • September 22, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • Coffee | Laptop | Notebook | Work 1
    First HP Work Relationship Index Shows Majority of People Worldwide Have an Unhealthy Relationship with Work
    • September 20, 2023
  • 2
    Huawei Connect 2023: Accelerating Intelligence For Shared Success
    • September 20, 2023
  • 3
    Applying Generative AI To Product Design With BigQuery DataFrames
    • September 21, 2023
  • 4
    Combining AI With A Trusted Data Approach On IBM Power To Fuel Business Outcomes
    • September 21, 2023
  • Microsoft and Adobe 5
    Microsoft And Adobe Partner To Deliver Cost Savings And Business Benefits
    • September 21, 2023
  • /
  • Artificial Intelligence
  • Explore
  • About
  • Contact Us

Input your search keywords and press Enter.