Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • Technology

Accelerating The Discovery Of New Materials For 3D Printing

  • October 20, 2021
  • liwaiwai.com
graphic of computer, discovery, materials cycle
Researchers at MIT and BASF have developed a data-driven system that accelerates the process of discovering new 3D printing materials that have multiple mechanical properties. Courtesy of the researchers
The growing popularity of 3D printing for manufacturing all sorts of items, from customized medical devices to affordable homes, has created more demand for new 3D printing materials designed for very specific uses.

To cut down on the time it takes to discover these new materials, researchers at MIT have developed a data-driven process that uses machine learning to optimize new 3D printing materials with multiple characteristics, like toughness and compression strength.

By streamlining materials development, the system lowers costs and lessens the environmental impact by reducing the amount of chemical waste. The machine learning algorithm could also spur innovation by suggesting unique chemical formulations that human intuition might miss.


Partner with liwaiwai.com
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

“Materials development is still very much a manual process. A chemist goes into a lab, mixes ingredients by hand, makes samples, tests them, and comes to a final formulation. But rather than having a chemist who can only do a couple of iterations over a span of days, our system can do hundreds of iterations over the same time span,” says Mike Foshey, a mechanical engineer and project manager in the Computational Design and Fabrication Group (CDFG) of the Computer Science and Artificial Intelligence Laboratory (CSAIL), and co-lead author of the paper.

Additional authors include co-lead author Timothy Erps, a technical associate in CDFG; Mina Konaković Luković, a CSAIL postdoc; Wan Shou, a former MIT postdoc who is now an assistant professor at the University of Arkansas; senior author Wojciech Matusik, professor of electrical engineering and computer science at MIT; and Hanns Hagen Geotzke, Herve Dietsch, and Klaus Stoll of BASF. The research was published today in Science Advances.

 

Read More  If AI Could Help You Take Control Of Your Life, Would You Let It?

Optimizing discovery

In the system the researchers developed, an optimization algorithm performs much of the trial-and-error discovery process.

A material developer selects a few ingredients, inputs details on their chemical compositions into the algorithm, and defines the mechanical properties the new material should have. Then the algorithm increases and decreases the amounts of those components (like turning knobs on an amplifier) and checks how each formula affects the material’s properties, before arriving at the ideal combination.

Then the developer mixes, processes, and tests that sample to find out how the material actually performs. The developer reports the results to the algorithm, which automatically learns from the experiment and uses the new information to decide on another formulation to test.

“We think, for a number of applications, this would outperform the conventional method because you can rely more heavily on the optimization algorithm to find the optimal solution. You wouldn’t need an expert chemist on hand to preselect the material formulations,” Foshey says.

The researchers have created a free, open-source materials optimization platform called AutoOED that incorporates the same optimization algorithm. AutoOED is a full software package that also allows researchers to conduct their own optimization.

 

Making materials

The researchers tested the system by using it to optimize formulations for a new 3D printing ink that hardens when it is exposed to ultraviolet light.

They identified six chemicals to use in the formulations and set the algorithm’s objective to uncover the best-performing material with respect to toughness, compression modulus (stiffness), and strength.

Maximizing these three properties manually would be especially challenging because they can be conflicting; for instance, the strongest material may not be the stiffest. Using a manual process, a chemist would typically try to maximize one property at a time, resulting in many experiments and a lot of waste.

Read More  Artificial Neural Networks Model Face Processing In Autism

The algorithm came up with 12 top performing materials that had optimal tradeoffs of the three different properties after testing only 120 samples.

Foshey and his collaborators were surprised by the wide variety of materials the algorithm was able to generate, and say the results were far more varied than they expected based on the six ingredients. The system encourages exploration, which could be especially useful in situations when specific material properties can’t be easily discovered intuitively.

 

Faster in the future

The process could be accelerated even more through the use of additional automation. Researchers mixed and tested each sample by hand, but robots could operate the dispensing and mixing systems in future versions of the system, Foshey says.

Farther down the road, the researchers would also like to test this data-driven discovery process for uses beyond developing new 3D printing inks.

“This has broad applications across materials science in general. For instance, if you wanted to design new types of batteries that were higher efficiency and lower cost, you could use a system like this to do it. Or if you wanted to optimize paint for a car that performed well and was environmentally friendly, this system could do that, too,” he says.

Because it presents a systematic approach for identifying optimal materials, this work could be a major step toward realizing high performance structures, says Keith A. Brown, assistant professor in the Department of Mechanical Engineering at Boston University.

“The focus on novel material formulations is particularly encouraging as this is a factor that is often overlooked by researchers who are constrained by commercially available materials. And the combination of data-driven methods and experimental science allows the team to identify materials in an efficient manner. Since experimental efficiency is something with which all experimenters can identify, the methods here have a chance of motivating the community to adopt more data-driven practices,” he says.

Read More  Microsoft And Accenture Partner To Tackle Methane Emissions With AI Technology

 

The research was supported by BASF

By Adam Zewe | MIT News Office
Source MIT News


For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

liwaiwai.com

Related Topics
  • 3D Printing
  • Algorithms
  • BASF
  • CSAIL
  • MIT
You May Also Like
View Post
  • Engineering
  • Technology

3 Questions: A New PhD Program From The Center For Computational Science And Engineering

  • September 28, 2023
View Post
  • Artificial Intelligence
  • Technology

Microsoft And Mercy Collaborate To Empower Clinicians To Transform Patient Care With Generative AI

  • September 27, 2023
View Post
  • Artificial Intelligence
  • Technology

NASA’s Mars Rovers Could Inspire A More Ethical Future For AI

  • September 26, 2023
Robotic Hand | Lights
View Post
  • Artificial Intelligence
  • Technology

Nvidia H100 Tensor Core GPUs Come To Oracle Cloud

  • September 24, 2023
View Post
  • Artificial Intelligence
  • Engineering
  • Technology

AI-Driven Tool Makes It Easy To Personalize 3D-Printable Models

  • September 22, 2023
View Post
  • Artificial Intelligence
  • Technology

Huawei: Advancing a Flourishing AI Ecosystem Together

  • September 22, 2023
View Post
  • Artificial Intelligence
  • Technology

Huawei Connect 2023: Accelerating Intelligence For Shared Success

  • September 20, 2023
Data
View Post
  • Artificial Intelligence
  • Machine Learning
  • Technology

UK Space Sector Has Sights Set On Artificial Intelligence And Machine Learning Professionals

  • September 15, 2023
A Field Guide To A.I.
Navigate the complexities of Artificial Intelligence and unlock new perspectives in this must-have guide.
Now available in print and ebook.

charity-water



Stay Connected!
LATEST
  • OpenAI 1
    How We Interact With Information: The New Era Of Search
    • September 28, 2023
  • 2
    Bring AI To Looker With The Machine Learning Accelerator
    • September 28, 2023
  • 3
    3 Questions: A New PhD Program From The Center For Computational Science And Engineering
    • September 28, 2023
  • 4
    Microsoft And Mercy Collaborate To Empower Clinicians To Transform Patient Care With Generative AI
    • September 27, 2023
  • 5
    NASA’s Mars Rovers Could Inspire A More Ethical Future For AI
    • September 26, 2023
  • 6
    Oracle CloudWorld 2023: 6 Key Takeaways From The Big Annual Event
    • September 25, 2023
  • 7
    3 Ways AI Can Help Communities Adapt To Climate Change In Africa
    • September 25, 2023
  • Robotic Hand | Lights 8
    Nvidia H100 Tensor Core GPUs Come To Oracle Cloud
    • September 24, 2023
  • 9
    AI-Driven Tool Makes It Easy To Personalize 3D-Printable Models
    • September 22, 2023
  • 10
    Huawei: Advancing a Flourishing AI Ecosystem Together
    • September 22, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • Coffee | Laptop | Notebook | Work 1
    First HP Work Relationship Index Shows Majority of People Worldwide Have an Unhealthy Relationship with Work
    • September 20, 2023
  • 2
    Huawei Connect 2023: Accelerating Intelligence For Shared Success
    • September 20, 2023
  • 3
    Applying Generative AI To Product Design With BigQuery DataFrames
    • September 21, 2023
  • 4
    Combining AI With A Trusted Data Approach On IBM Power To Fuel Business Outcomes
    • September 21, 2023
  • Microsoft and Adobe 5
    Microsoft And Adobe Partner To Deliver Cost Savings And Business Benefits
    • September 21, 2023
  • /
  • Artificial Intelligence
  • Explore
  • About
  • Contact Us

Input your search keywords and press Enter.