Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • Engineering
  • Machine Learning

Peacock: Tackling ML Challenges By Accelerating Skills

  • March 23, 2023
  • liwaiwai.com

At Peacock, we are acutely aware of global trends and changes in adopting machine learning (ML) techniques, particularly in the field of media and entertainment. We anticipate that, within several years, most software applications will have an element of ML and will require fine tuning of a model, putting increasing demand on ML training infrastructure.

As the Director of Analytics Tooling at Peacock, I head up a team of engineers whose primary aim is to build scalability into our tools and processes, enabling us to keep up with the ever-changing field of ML engineering and create a better user experience. We use ML for a wide range of tasks, such as learning more about users’ viewing preferences and interests so we can provide more personalized content recommendations.


Partner with liwaiwai.com
for your next big idea.
Let us know here.


cyberpogo

But the discipline of ML engineering is unique. It requires people from two significantly different backgrounds, applied ML and software engineering, to meet in the middle, collaborate, and learn from each other. Both groups face challenges they have not experienced before, regularly pushing them out of their comfort zones and catalyzing true innovation.

Continuous education in life is empowering and beneficial, but in the case of remaining competitive in our industry, it is necessary. As we build, scale, and iterate our tools and processes, we rely on training, resources, and education from Google Cloud. Here’s a look at how we invest in upskilling initiatives to scale our data science organization.

Accelerated training with Google Cloud Advanced Solutions Lab

As a relatively new and complex discipline, ML engineering has not yet seen established patterns and standards, making ongoing training essential for keeping up with industry changes. We have worked closely with Google Cloud for several years to develop our data analytics based on solutions like BigQuery, so when it came to providing ongoing education to our data scientists and engineers, Google Cloud was the natural choice.

Read More  Cloudflare Announces API Gateway; Increases Security For Billions Of Devices And Systems With Robust Machine Learning Engine

We encourage our engineers and data scientists to earn Google Cloud certifications, such as the Professional Cloud Architect and Professional Data Engineer. In addition, Google Cloud offers on-demand training to understand, implement, and scale data science and ML tools, like these role-based learning paths for Data Engineers and ML Engineers. We also use Cloud Hero, a gamified Google Cloud training experience that uses hands-on labs to teach skills in an interactive learning environment.

Perhaps the most impactful offering has been the Advanced MLOps workshop from the Google Cloud Advanced Solutions Lab. Participants were split roughly fifty-fifty between engineers and data scientists, from six or seven teams across multiple organizations. Being in the same workshop allowed us to establish a baseline among multidisciplinary teams, and to create a common vocabulary and a shared understanding of the problems we face.

This immersive MLOps deep dive offered something for everyone, no matter the participant’s background. The first week focused on containers, Kubernetes, CI/CD, and ML pipelines—in other words, the topics that would have been a refresher to a good engineer but unfamiliar to some data scientists. This changed in the second week, as we moved on to building models and the basics of TensorFlow and TFX components. At this point, the data scientists felt more in their element, while some engineers were experiencing it for the first time. The Advanced Solutions Lab served as a melting pot for teams that previously had not collaborated with each other, helping everyone learn and grow together.

“Peacock’s ML Engineering team has done an amazing job in creating and implementing a robust training program and we are proud to be their Partner of choice. The team members have thoroughly adopted a growth mindset and are continually pursuing strategic opportunities to learn and grow their technical capabilities, and we’re excited to be a part of it.”—Heather Remek, Head of Customer Experience – Telecommunications Industry, Google Cloud

Educating today to build for tomorrow

We are operating in a new and fast-changing industry, but tooling, processes, or compute resources should not stand in the way of creating better ML models. With the right tools, techniques, and mindset, data scientists and ML engineers can develop the skills necessary to excel and progress in our field.

Read More  Machine Learning Algorithm Predicts How To Get The Most Out Of Electric Vehicle Batteries

As ML evolves, we’ll continue to stay informed, practice on real-world problems, and invest in our upskilling programs. Our collaboration with the Google Cloud team on our ML journey has allowed us to increase the knowledge and competency of our data science teams as they build, productionalize, and scale end-to-end ML solutions. By educating today, we can empower our organization to build for tomorrow and make better data-driven decisions.

Learn more about the Google Cloud Advanced Solutions Lab and explore on-demand role based training for data scientists and ML engineers.

By: Kris Lachor (Director of Analytics Tooling, Peacock) and Sharad Kala (Customer Experience Executive, Google Cloud)
Originally published at Google Cloud Blog

Source: Cyberpogo


Our humans need coffee too! Your support is highly appreciated, thank you!

liwaiwai.com

Related Topics
  • Certifications
  • Google Cloud
  • Machine Learning
  • Peacock
  • Training
You May Also Like
View Post
  • Data
  • Machine Learning

Effective Management Of Data Sources In Machine Learning

  • May 29, 2023
View Post
  • Artificial Intelligence
  • Data
  • Machine Learning

Faster Together: How Dun & Bradstreet Datasets Accelerate Your Real-Time Insights

  • May 24, 2023
View Post
  • Engineering
  • Machine Learning
  • Practices

5 Skills Every Successful MLOps Engineer Should Have

  • May 24, 2023
View Post
  • Data
  • Engineering
  • Machine Learning

3 Essential Concepts Data Scientists Should Learn From MLOps Engineers

  • May 23, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Public Cloud

Introducing Duet AI For Developers: The Next Frontier In Ai-powered Developer Productivity

  • May 22, 2023
View Post
  • Artificial Intelligence
  • Machine Learning

How Alan Turing and His Test Became AI Legend

  • May 22, 2023
View Post
  • Engineering
  • Machine Learning
  • Technology

A Better Way To Study Ocean Currents

  • May 22, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Public Cloud

Making Your Pictures Worth A Thousand Labels! (With Cloud Vision API)

  • May 22, 2023
Stay Connected!
LATEST
  • 1
    When The Rubber Duck Talks Back
    • June 1, 2023
  • 2
    Helping Robots Handle Fluids
    • June 1, 2023
  • 3
    Introducing 100K Context Windows
    • May 30, 2023
  • 4
    Sandvik unveils the Impossible Statue – an AI-enabled collaboration between Michelangelo, Rodin, Kollwitz, Kotaro, Savage and Sandvik
    • May 30, 2023
  • 5
    Capgemini And Google Cloud Expand Long-Standing Partnership To Create First-Of-Its Kind Generative AI Center Of Excellence To Accelerate Client Value
    • May 30, 2023
  • 6
    Effective Management Of Data Sources In Machine Learning
    • May 29, 2023
  • 7
    How Auditoria.AI Is Building AI-Powered Smart Assistants For Finance Teams
    • May 29, 2023
  • 8
    G7 2023: The Real Threat To The World Order Is Hypocrisy.
    • May 28, 2023
  • 9
    AI Coming To The PC At Scale
    • May 27, 2023
  • 10
    Build Next-Generation, AI-Powered Applications On Microsoft Azure
    • May 26, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    Combining Generative AI With IBM Watson, Mitsui Chemicals Starts Verifying New Application Discovery For Agility And Accuracy
    • May 25, 2023
  • 2
    Wipro Expands Google Cloud Partnership To Advance Enterprise Adoption Of Generative AI
    • May 23, 2023
  • 3
    Google Cloud Launches AI-Powered Solutions To Safely Accelerate Drug Discovery And Precision Medicine
    • May 16, 2023
  • 4
    Huawei And Partners Announce Yucatan Wildlife Conservation Findings
    • May 18, 2023
  • 5
    Cloudflare’s R2 Is The Infrastructure Powering Leading AI Companies
    • May 16, 2023
  • /
  • Artificial Intelligence
  • Explore
  • About
  • Contact Us

Input your search keywords and press Enter.