Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • Data
  • Machine Learning

5 Strategies That Can Improve Your Performance In Machine Learning

  • January 2, 2021
  • admin

“Machine learning is compute-intensive.”

Advances in innovation to capture and process a lot of data have left us suffocating in information. This makes it hard to extricate insights from data at the rate we get it. This is the place where machine learning offers some benefit to a digital business.

We need strategies to improve machine learning performance all the more effectively. Since, supposing that we put forth efforts in the wrong direction, we can’t get a lot of progress and burn through a lot of time. Then, we need to get a few expectations toward the path we picked, for instance, how much precision can be improved.


Partner with liwaiwai.com
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

 

Articulate the issue

There are by and large two kinds of organizations that participate in machine learning: those that build applications with a trained ML model inside as their core business proposition and those that apply ML to upgrade existing business work processes. In the latter case, articulating the issue will be the underlying challenge. Diminishing the expense or increasing income should be limited to the moment that it gets solvable by gaining the right data.

For example, if you need to minimize the churn rate, data may assist you with detecting clients with a high “fly risk” by analyzing their activities on a website, a SaaS application, or even online media. In spite of the fact that you can depend on traditional metrics and make suppositions, the algorithm may unwind shrouded dependencies between the data in clients’ profiles and the probability to leave.

 

Resource Management

Resource management has become a significant part of a data scientist’s duties. For instance, it is a challenge having a GPU worker on-prem for a group of five data scientists. A lot of time is spent sorting out some way to share those GPU’s simply and effectively. Allocation of compute resources for machine learning can be a major agony, and takes time away from doing data science tasks.

Read More  Introducing New Relic Grok, The Industry’s First Generative AI Observability Assistant

 

Focus on Quality of Data

Data science is an expansive field of practices pointed toward removing significant insights from data in any structure. Furthermore, utilizing data science in decision-making is a better method to stay away from bias. Nonetheless, that might be trickier than you might suspect. Indeed, even Google has as of late fallen into a trap of indicating more esteemed jobs to men in their ads than to women. Clearly, it isn’t so much that Google data scientists are sexist, but instead the data that the algorithm utilizes is one-sided on the grounds that it was gathered from our interactions on the web.

 

Embrace Hybrid Cloud

Machine learning is compute-intensive. A scalable machine learning foundation should be compute agnostic. Joining public clouds, private clouds, and on-premise resources offers flexibility and agility as far as running AI workloads. Since the kinds of workloads shift significantly between AI workloads, companies that construct a hybrid cloud infrastructure can dispense assets all the more deftly in custom sizes. You can bring down CapEx expenditure with public cloud, and offer the scalability required for times of high compute demands. In companies with strict security demands, the expansion of private cloud is essential, and can bring down OpEx over the long-term. Hybrid cloud encourages you to accomplish the control and flexibility necessary to improve planning of resources.

 

Be prepared to Iterate

A large portion of the models are created on a static subset of information, and they capture the conditions of the time frame when the data was gathered. When you have a model or various them deployed, they become dated over time and give less exact expectations. Contingent upon how effectively the patterns in your business climate change, you should pretty much regularly replace models or retrain them.

Read More  Artificial Intelligence Puts Focus On The Life Of Insects

This feature is sourced from Analytics Insight.


For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

admin

Related Topics
  • AI workloads
  • Data Analytics
  • Deep Learning
  • Hybrid Cloud
  • Machine Learning
You May Also Like
View Post
  • Artificial Intelligence
  • Data

Applying Generative AI To Product Design With BigQuery DataFrames

  • September 21, 2023
Microsoft and Adobe
View Post
  • Artificial Intelligence
  • Machine Learning
  • Platforms

Microsoft And Adobe Partner To Deliver Cost Savings And Business Benefits

  • September 21, 2023
Data
View Post
  • Artificial Intelligence
  • Machine Learning
  • Technology

UK Space Sector Has Sights Set On Artificial Intelligence And Machine Learning Professionals

  • September 15, 2023
View Post
  • Data
  • Platforms

Microsoft And Oracle Expand Partnership To Deliver Oracle Database Services On Oracle Cloud Infrastructure In Microsoft Azure

  • September 14, 2023
Data
View Post
  • Artificial Intelligence
  • Engineering
  • Machine Learning
  • Platforms

How Verve Group Transforms Customer Experiences With Google Cloud Vertex AI

  • September 11, 2023
View Post
  • Artificial Intelligence
  • Data
  • Platforms
  • Software Engineering
  • Technology

Combining AI With A Trusted Data Approach On IBM Power To Fuel Business Outcomes

  • September 11, 2023
View Post
  • Artificial Intelligence
  • Machine Learning
  • Technology

ListenField Enables Farmers To Harvest The Benefits Of AI And Machine Learning

  • September 7, 2023
View Post
  • Data
  • Learning

Resources to Take Your Charts From Bland to Beautiful

  • September 7, 2023
A Field Guide To A.I.
Navigate the complexities of Artificial Intelligence and unlock new perspectives in this must-have guide.
Now available in print and ebook.

charity-water



Stay Connected!
LATEST
  • 1
    AI-Driven Tool Makes It Easy To Personalize 3D-Printable Models
    • September 22, 2023
  • 2
    Applying Generative AI To Product Design With BigQuery DataFrames
    • September 21, 2023
  • 3
    Combining AI With A Trusted Data Approach On IBM Power To Fuel Business Outcomes
    • September 21, 2023
  • Microsoft and Adobe 4
    Microsoft And Adobe Partner To Deliver Cost Savings And Business Benefits
    • September 21, 2023
  • 5
    Huawei Connect 2023: Accelerating Intelligence For Shared Success
    • September 20, 2023
  • 6
    Document AI Workbench Is Now Powered By Generative AI To Structure Document Data Faster
    • September 15, 2023
  • Data 7
    UK Space Sector Has Sights Set On Artificial Intelligence And Machine Learning Professionals
    • September 15, 2023
  • Intel Innovation 8
    Intel Innovation 2023
    • September 15, 2023
  • 9
    Introducing OpenAI Dublin
    • September 14, 2023
  • 10
    Microsoft And Oracle Expand Partnership To Deliver Oracle Database Services On Oracle Cloud Infrastructure In Microsoft Azure
    • September 14, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    Real-Time Ubuntu Is Now Available In AWS Marketplace
    • September 12, 2023
  • 2
    IBM Brings Watsonx To ESPN Fantasy Football With New Waiver Grades And Trade Grades
    • September 13, 2023
  • 3
    IBM Announced As A Sponsor Of 2023 U.N. Climate Change Conference (COP28)
    • September 13, 2023
  • 4
    NASA Shares Unidentified Anomalous Phenomena Independent Study Report
    • September 14, 2023
  • 5
    Bristol Set To Host UK’s Most Powerful Supercomputer To Turbocharge AI Innovation
    • September 13, 2023
  • /
  • Artificial Intelligence
  • Explore
  • About
  • Contact Us

Input your search keywords and press Enter.