Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • Learning
  • About
  • Artificial Intelligence

New AI Research To Help Predict COVID-19 Resource Needs From A Series Of X-rays

  • January 18, 2021
  • liwaiwai.com

Researchers, healthcare providers, and many others around the world are still grappling with COVID-19. Even a year into the pandemic, it remains challenging for doctors to predict how a patient’s condition may change over the course of the disease. Will the patient improve in the next few days or worsen to the point where more intensive care is needed? With resources under unprecedented strain, it’s important that hospitals know whether patients are likely to need escalated treatment and plan accordingly.

As part of our ongoing collaboration with NYU Langone Health’s Predictive Analytics Unit and Department of Radiology, we have developed three machine learning (ML) models that could help doctors predict how a patient’s condition may develop, in order to help hospitals ensure they have sufficient resources to care for patients: 1) a model for predicting patient deterioration based on a single X-ray, 2) a model for predicting patient deterioration based on a sequence of X-rays, and 3) a model for predicting how much supplemental oxygen (if any) a patient might need based on a single X-ray.


Partner with liwaiwai.com
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

Our model using sequential chest X-rays can predict up to four days (96 hours) in advance if a patient may need more intensive care solutions, generally outperforming predictions by human experts. These predictions could help doctors avoid sending at-risk patients home too soon, and help hospitals better predict demand for supplemental oxygen and other limited resources.

We are open-sourcing our pretrained models and publishing our research so the broader community can benefit from and build on what we’ve done.

 

Leveraging self-supervised learning

Previous approaches to this problem have relied on supervised training and used single timeframe images. While progress has been made with supervised training methods, labeling data is extremely time-intensive and thus limiting. We chose instead to pretrain our ML system on two large, public chest X-ray data sets, MIMIC-CXR-JPG and CheXpert, using a self-supervised learning technique called Momentum Contrast (MoCo). This allowed us to use large amounts of non-COVID chest X-ray data to train a neural network that could extract information from chest X-ray images. Then we fine-tuned the MoCo model using an extended version of the NYU COVID-19 data set.

Read More  Using Machine Learning To Hunt Down Cybercriminals

MoCo relies on unsupervised learning using a contrastive loss function, mapping images to a latent space wherein similar images are mapped to vectors that are close together and dissimilar images to vectors that are further apart. These vectors can be used as feature representations, allowing one to train classifiers using a small number of labeled examples. Recent research shows that self-supervised learning using contrastive loss functions is effective in a variety of classification tasks.

After pretraining the MoCo model on MIMIC-CXR-JPG and CheXpert, we then used the pretrained model to build classifiers that could predict whether a COVID-19 patient’s condition is likely to deteriorate. As mentioned, we used the NYU COVID chest X-ray data set for fine-tuning, as it contained 26,838 X-ray images taken from 4,914 patients. This smaller data set was labeled with whether the patient’s condition worsened within 24, 48, 72, or 96 hours of the scan in question.

We built two kinds of classifiers to predict patient deterioration. The first model predicts patient deterioration based on a single X-ray in a fashion similar to a previous study. The second model predicts patient deterioration based on a sequence of X-rays by aggregating the image features via a Transformer model.

 

Helping with resource planning

Using self-supervised learning without having to rely on labeled data sets is crucial, as few research groups have enough COVID chest X-rays to train AI models. Building AI models that can use a sequence of X-rays for prediction purposes is particularly valuable because this method mirrors how human radiologists work, as using a sequence of X-rays is more accurate for long-term predictions. Importantly, this method also accounts for the evolution of COVID infections over time.

Read More  New Research Finds Organizations Need To Adopt A Holistic Approach To Improve Cyber Readiness

Based on reader studies that we conducted with radiologists at NYU Langone, our models that used sequences of X-ray images outperformed human experts at predicting ICU needs and mortality predictions, and overall adverse event predictions in the longer term (up to 96 hours). Being able to predict whether a patient will need oxygen resources would also be a first, and could help hospitals as they decide how to allocate resources in the weeks and months to come. With COVID-19 cases rising again across the world, hospitals need tools to predict and prepare for upcoming surges as they plan their resource allocations. Our models could help.

“We have been able to show that with the use of this AI algorithm, serial chest radiographs can predict the need for escalation of care in patients with COVID-19,” says William Moore, MD, a Professor of Radiology at NYU Langone Health. “As COVID-19 continues to be a major public health issue, the ability to predict a patient’s need for elevation of care — for example, ICU admission — will be essential for hospitals.”

These models are not products, but rather research solutions, intended to help hospitals in the days and months to come with resource planning. While hospitals have their own unique data sets, they often don’t have the computational power necessary to train deep learning models from scratch. We are open-sourcing our pretrained models (and publishing our results) so that hospitals with limited computational resources can fine-tune the models using their own data — work that can be done with a single GPU.

Read More  82% Of People Believe Robots Can Support Their Career Better Than Humans

Both NYU Langone Health and Facebook AI remain committed to the principles of open science, and hope that by releasing this research, hospitals and the community at large can build upon what we’ve done so far — and that our models help the experts make crucial decisions and better serve patients with their limited time and resources.

By Anuroop Sriram Research Engineer |  Matthew Muckley Research Engineer | Koustuv Sinha Research Assistant | Nafissa Yakubova Program Manager
Source Facebook AI


For enquiries, product placements, sponsorships, and collaborations, connect with us at [email protected]. We'd love to hear from you!

Our humans need coffee too! Your support is highly appreciated, thank you!

liwaiwai.com

Related Topics
  • COVID-19
  • Facebook AI
  • NYU Langone
  • Research
  • X-ray
You May Also Like
OpenAI
View Post
  • Artificial Intelligence
  • Platforms

How We Interact With Information: The New Era Of Search

  • September 28, 2023
View Post
  • Artificial Intelligence
  • Engineering
  • Machine Learning
  • Platforms

Bring AI To Looker With The Machine Learning Accelerator

  • September 28, 2023
View Post
  • Artificial Intelligence
  • Technology

Microsoft And Mercy Collaborate To Empower Clinicians To Transform Patient Care With Generative AI

  • September 27, 2023
View Post
  • Artificial Intelligence
  • Machine Learning

Canonical releases Charmed MLFlow

  • September 26, 2023
View Post
  • Artificial Intelligence
  • Technology

NASA’s Mars Rovers Could Inspire A More Ethical Future For AI

  • September 26, 2023
View Post
  • Artificial Intelligence
  • Platforms

Oracle CloudWorld 2023: 6 Key Takeaways From The Big Annual Event

  • September 25, 2023
View Post
  • Artificial Intelligence

3 Ways AI Can Help Communities Adapt To Climate Change In Africa

  • September 25, 2023
Robotic Hand | Lights
View Post
  • Artificial Intelligence
  • Technology

Nvidia H100 Tensor Core GPUs Come To Oracle Cloud

  • September 24, 2023
A Field Guide To A.I.
Navigate the complexities of Artificial Intelligence and unlock new perspectives in this must-have guide.
Now available in print and ebook.

charity-water



Stay Connected!
LATEST
  • OpenAI 1
    How We Interact With Information: The New Era Of Search
    • September 28, 2023
  • 2
    Bring AI To Looker With The Machine Learning Accelerator
    • September 28, 2023
  • 3
    3 Questions: A New PhD Program From The Center For Computational Science And Engineering
    • September 28, 2023
  • 4
    Microsoft And Mercy Collaborate To Empower Clinicians To Transform Patient Care With Generative AI
    • September 27, 2023
  • 5
    Canonical releases Charmed MLFlow
    • September 26, 2023
  • 6
    NASA’s Mars Rovers Could Inspire A More Ethical Future For AI
    • September 26, 2023
  • 7
    Oracle CloudWorld 2023: 6 Key Takeaways From The Big Annual Event
    • September 25, 2023
  • 8
    3 Ways AI Can Help Communities Adapt To Climate Change In Africa
    • September 25, 2023
  • Robotic Hand | Lights 9
    Nvidia H100 Tensor Core GPUs Come To Oracle Cloud
    • September 24, 2023
  • 10
    AI-Driven Tool Makes It Easy To Personalize 3D-Printable Models
    • September 22, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    Huawei: Advancing a Flourishing AI Ecosystem Together
    • September 22, 2023
  • Coffee | Laptop | Notebook | Work 2
    First HP Work Relationship Index Shows Majority of People Worldwide Have an Unhealthy Relationship with Work
    • September 20, 2023
  • 3
    Huawei Connect 2023: Accelerating Intelligence For Shared Success
    • September 20, 2023
  • 4
    Applying Generative AI To Product Design With BigQuery DataFrames
    • September 21, 2023
  • 5
    Combining AI With A Trusted Data Approach On IBM Power To Fuel Business Outcomes
    • September 21, 2023
  • /
  • Artificial Intelligence
  • Explore
  • About
  • Contact Us

Input your search keywords and press Enter.