Liwaiwai Liwaiwai



Liwaiwai Liwaiwai
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
    • Architecture
    • Design
    • Software
    • Hybrid Cloud
    • Data
  • About
  • Artificial Intelligence
  • Data Science
  • Machine Learning

Flexible AI Computer Chips Promise Wearable Health Monitors That Protect Privacy

  • November 29, 2022
  • Ackley Wyndam

The Research Brief is a short take about interesting academic work.

The big idea

My colleagues and I have developed a flexible, stretchable electronic device that runs machine-learning algorithms to continuously collect and analyze health data directly on the body. The skinlike sticker, developed in my lab at the University of Chicago’s Pritzker School of Molecular Engineering, includes a soft, stretchable computing chip that mimics the human brain.

To create this type of device, we turned to electrically conductive polymers that have been used to build semiconductors and transistors. These polymers are made to be stretchable, like a rubber band. Rather than working like a typical computer chip, though, the chip we’re working with, called a neuromorphic computing chip, functions more like a human brain. It’s able to both store and analyze data.

To test the usefulness of the new device, my colleagues and I used it to analyze electrocardiogram data representing the electrical activity of the human heart. We trained the device to classify ECGs into five categories: healthy and four types of abnormal signals. Even in conditions where the device is repeatedly stretched by movements of the wearer’s body, the device could still accurately classify the heartbeats.

a small rectangle of clear rubber being stretched between two hands we face in the background
These electronic circuits are flexible and stretchable.
UChicago Pritzker Molecular Engineering/John Zich, CC BY-ND

Why it matters

Most of the signals from the human body, such as the electrical activity in the heart recorded by ECG, are typically weak and subtle. Accurately recording these small signals requires direct contact between electronic devices and the human body. This can only be achieved by fabricating electronic devices to be as soft and stretchy as skin. We envision that wearable electronics will play a key role in tracking complex indicators of human health, including body temperature, cardiac activity, levels of oxygen, sugar, metabolites and immune molecules in the blood.

Analyzing large amounts of continuously acquired health data is challenging, however. A single piece of data must be put into the broader perspective of a patient’s full health history, and that is a big task. Cutting-edge machine-learning algorithms that identify patterns in extremely complex data sets are the most promising route to being able to pick out the most important signals of disease.

A typical approach to using machine learning to analyze real-time health data is to transmit the data wirelessly from wearable devices to a computer. But this poses challenges. Sending health data wirelessly is not only slow and consumes extra power, but it also raises privacy concerns. Our research aims to make the AI analysis of health data happen within these skinlike wearable devices, which would minimize the amount of information a device would need to transmit.

The ultimate goal is for this on-the-spot analysis to be able to send patients or health care providers timely alerts, or even one day automatically adjust medication dispensed by other wearable or implanted devices.

What other research is being done

Other research about AI processing health data collected from wearable devices has mainly involved transferring the data to computers running AI algorithms. These projects have demonstrated the potential of AI for extracting useful information from complicated health data.

The recent development of flexible neuromorphic processors is an important step toward running AI data analysis directly on wearable devices, but these flexible processors lack skinlike stretchability and softness, which makes it difficult to build them into wearable devices. In contrast, our device has the skinlike properties necessary for a wearable health monitor.

What’s next

Moving forward, researchers are likely to extend this type of AI analysis integrated in wearable devices to other types of health conditions and diseases. My lab is planning to improve our device, both to better integrate the device’s components and expand the types of machine-learning algorithms it can be used with.

Our work is a good starting point for creating devices that build artificial intelligence into wearable electronics – devices that could help people live longer and healthier lives.The Conversation

Sihong Wang, Assistant Professor of Molecular Engineering, University of Chicago Pritzker School of Molecular Engineering

This article is republished from The Conversation under a Creative Commons license.

Ackley Wyndam

Related Topics
  • AI
  • Algorithms
  • Artificial Intelligence
  • Health data
  • Health monitoring
You May Also Like
View Post
  • Artificial Intelligence

Microsoft‘s Big AI Ambitions Go Beyond Just OpenAI And ChatGPT

  • February 3, 2023
View Post
  • Artificial Intelligence
  • Technology

Deepfakes: Faces Created By AI Now Look More Real Than Genuine photos

  • February 3, 2023
View Post
  • Artificial Intelligence

GPT-3 In Your Pocket? Why Not!

  • February 3, 2023
View Post
  • Artificial Intelligence
  • Design
  • Engineering

Can AI Replace Cloud Architects?

  • February 2, 2023
View Post
  • Artificial Intelligence

Meet Aiko And Aiden: The World’s First AI Interns

  • February 2, 2023
View Post
  • Artificial Intelligence
  • Technology

Google Scrambles To Catch Up In The Wake Of OpenAI’s ChatGPT

  • January 31, 2023
View Post
  • Artificial Intelligence
  • Technology

9 Ways We Use AI In Our Products

  • January 31, 2023
View Post
  • Artificial Intelligence
  • Technology

7 Ways Google Is Using AI To Help Solve Society’s Challenges

  • January 30, 2023
Stay Connected!
LATEST
  • 1
    Microsoft‘s Big AI Ambitions Go Beyond Just OpenAI And ChatGPT
    • February 3, 2023
  • 2
    Deepfakes: Faces Created By AI Now Look More Real Than Genuine photos
    • February 3, 2023
  • 3
    GPT-3 In Your Pocket? Why Not!
    • February 3, 2023
  • 4
    Can AI Replace Cloud Architects?
    • February 2, 2023
  • 5
    Meet Aiko And Aiden: The World’s First AI Interns
    • February 2, 2023
  • 6
    Google Scrambles To Catch Up In The Wake Of OpenAI’s ChatGPT
    • January 31, 2023
  • 7
    9 Ways We Use AI In Our Products
    • January 31, 2023
  • 8
    Google Cloud Unveils New AI Tools for Retailers
    • January 31, 2023
  • 9
    7 Ways Google Is Using AI To Help Solve Society’s Challenges
    • January 30, 2023
  • 10
    The Ethics Of Machine Learning: Understanding The Role Of Developers And Designers
    • January 30, 2023

about
About
Hello World!

We are liwaiwai.com. Created by programmers for programmers.

Our site aims to provide materials, guides, programming how-tos, and resources relating to artificial intelligence, machine learning and the likes.

We would like to hear from you.

If you have any questions, enquiries or would like to sponsor content, kindly reach out to us at:

[email protected]

Live long & prosper!
Most Popular
  • 1
    8 Best Human Behaviour Datasets For Machine Learning
    • January 30, 2023
  • 2
    Built With BigQuery: How To Accelerate Data-Centric AI Development With Google Cloud And Snorkel AI
    • January 29, 2023
  • 3
    What Kind Of Future Will AI Bring Enterprise IT?
    • January 29, 2023
  • 4
    Prompt Engineering For ChatGPT And Generative AI
    • January 29, 2023
  • 5
    AI Might Be Seemingly Everywhere, But There Are Still Plenty Of Things It Can’t Do—for now
    • January 27, 2023
  • /
  • Artificial Intelligence
  • Machine Learning
  • Robotics
  • Engineering
  • About

Input your search keywords and press Enter.